

AQ 200 SERIES

PROTECTION, CONTROL, MEASUREMENT,
AND MONITORING DEVICES

BENEFITS OF THE AQ 200 SERIES	3
➤ The most accurate protection relay in the world	4
➤ New era of line protection for evolving power grids	5
➤ Intermittent earth fault protection	7
➤ Broad-range earth fault detection with multiple criteria	8
➤ Disturbance recorder and power quality	9
➤ Cable-end differential protection	10
➤ AQ-S254A - A new generation of alarm annunciations	11
➤ Making data from the arc flash protection system visible for taking further actions	12
➤ AQ-C255 The power factor controller	13
AQIVATE 200	14
AQ 200 PROTECTION FUNCTIONS	16
AQ 200 CONTROL AND MONITORING FUNCTIONS	23
AQ 250 SERIES	26
➤ AQ-F255 Feeder protection device	26
➤ AQ-F255 Line Protection Device	28
➤ AQ-M255 Motor protection device	30
➤ AQ-M257 Motor protection device	31
➤ AQ-G257 Generator protection device	32
➤ AQ-V251 Voltage protection device	33
➤ AQ-C255 Capacitor bank protection device	34
➤ AQ-T256 Transformer protection device	36
➤ AQ-T257 Transformer protection device	37
➤ AQ-S254 Alarm and indication device	39
➤ AQ-S255 Bay control device	40
LIST OF AVAILABLE OPTION MODULES	58
AQ 250 ACCESSORIES	60
AQ 210 ACCESSORIES	61
TYPE TESTS	62
EXAMPLE WIRING	63
AQ 250 INSTALLATION AND DIMENSIONS	64
AQ 210 INSTALLATION AND DIMENSIONS	65
NOTES	66
AQ 210 SERIES	41
➤ AQ-F201 Feeder protection device	41
➤ AQ-F205 Feeder protection device	42
➤ AQ-F210 Feeder protection device	43
➤ AQ-F213 Feeder protection device	44
➤ AQ-F215 Feeder protection device	46
➤ AQ-M210 Motor protection device	47
➤ AQ-M215 Motor protection device	48
➤ AQ-G215 Generator protection device	49
➤ AQ-V211 Voltage protection device	50
➤ AQ-C215 Capacitor bank protection device	51
➤ AQ-T215 Transformer protection device	52
➤ AQ-T216 Transformer protection device	53
➤ AQ-S214 Alarm and indication device	54
➤ AQ-S215 Bay control device	55
➤ AQ-P215 Power monitoring device	56
➤ AQ-R215 Railway protection device	57

BENEFITS OF THE AQ 200 SERIES

The AQ 200 series provides an optimal protection for any electrical protection and control application, from utilities and power plants to wind power and heavy industry applications (offshore, marine) as well as industrial and commercial electrical systems. The series offers both integrated and segregated solutions that include complementary and powerful monitoring, measuring, communication, and diagnostics information.

The AQ 200 series is an umbrella designation which includes two levels of protection relays: the AQ 210 series offers cost-effective solutions to less complex applications, while the AQ 250 series is ideal for more demanding applications that require a more integrated functionality with a possibility for additional I/O or communication expansion.

All devices are modular as well as easy and fast to configure. The latest technologies give protection and control engineers new options and open a whole new dimension of protection and control!

AQ 200 benefits

VERSATILE PROTECTION DESIGN

The AQ 200 series is characterized by fast, versatile, and dependable protection functions with a uniquely wide operating frequency band (6...75 Hz). This makes AQ 200 devices a perfect choice for even the most demanding protection applications, including rotating machines.

MODULARITY

The fully modular hardware construction of AQ 200 series devices allow for a high level of flexibility. Existing devices can be augmented with additional I/O or communication modules according to application needs by simply plugging them in.

USABILITY

Various features guarantee that users get the maximum use out of their devices. AQ 200

devices include guided wizards, sophisticated setting aids, highly customizable HMI, file storage of supportive documents, and extensive user log information. The devices also have a complete user history registry with setting changes and other operational history.

standard protocols, including the IEC 61850 substation communication standard with fast GOOSE messaging. All AQ 250 series devices have been certified for the 2nd Edition of the IEC 61850 communication protocol.

SAVINGS IN ENGINEERING TIME

The AQtivate 200 setting and configuration software saves valuable engineering time by offering an intuitive user interface that is easy to use and free of charge. You can download all relay settings instantly into the device with the native Ethernet connection.

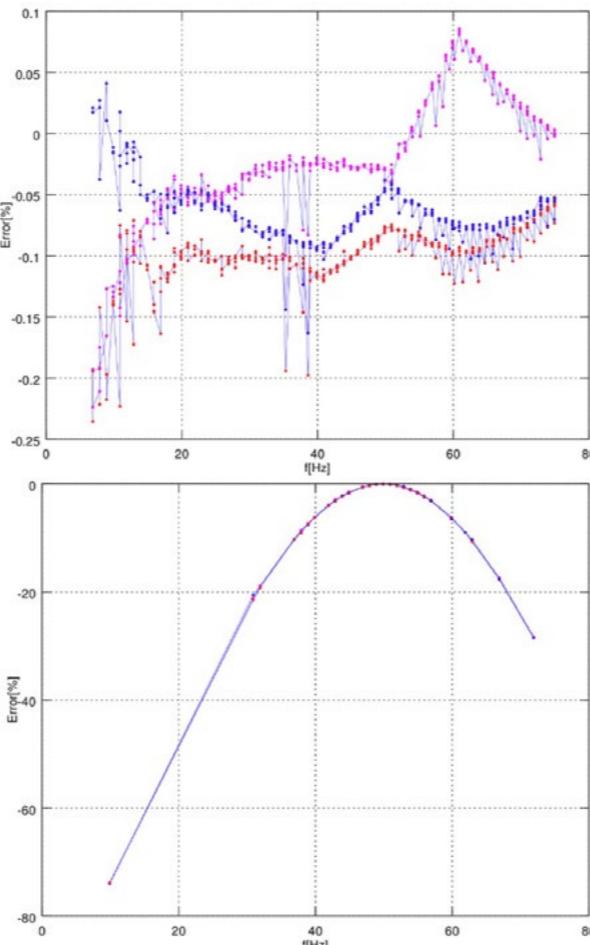
STANDARDIZED HARDWARE

The highly standardized hardware design provides trouble-free logistics and storage. Each AQ 200 device includes a CPU module with a set of digital I/O, as well as an RJ-45 port in the front and the rear of the device.

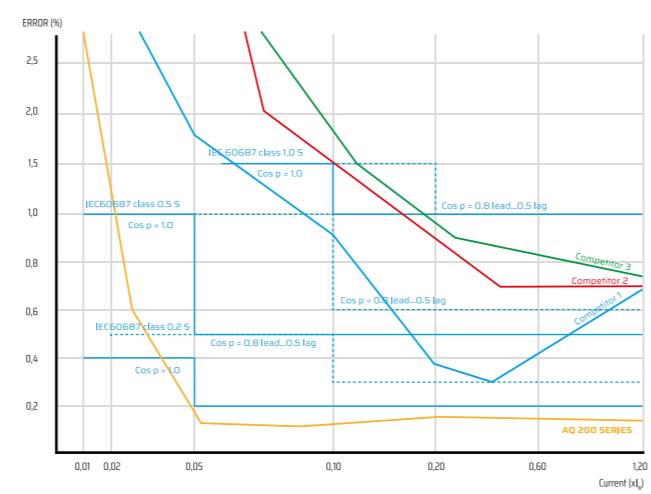
The most accurate protection relay in the world

ACCURATE AND INDEPENDENT OF FREQUENCY

Arcteq's AQ 200 series of protection and control devices use our patented measurement technology which provides a unique combination of characteristics. With a power and energy measurement accuracy of 0.2 %, a single device has a full and dynamic measurement range as well as measurement and protection independent of frequency.


The AQ 200 series provides an optimal protection and control solution for any utility.

This makes AQ 200 series devices well suited for any application that only requires accurate measurement, or one that needs a combination of measurement and protection. Additionally, our frequency-independent measurement technology allows for more accurate protection for rotating machines.


PATENTED MEASUREMENT ALGORITHM

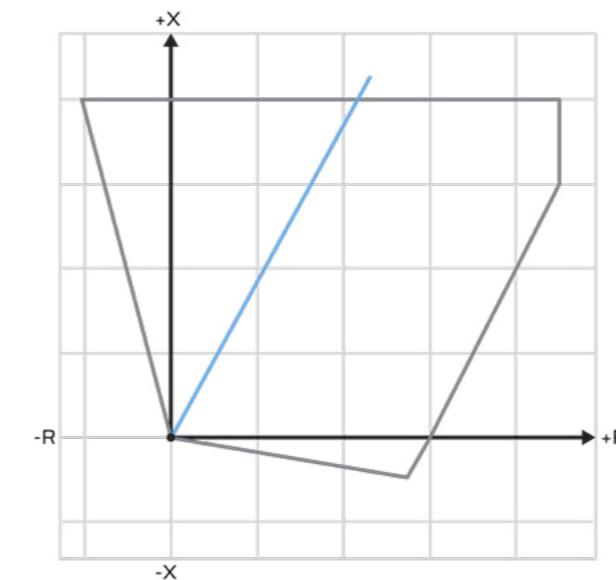
AQ 200 devices adjust the sample rate of the measurement channels according to the measured system frequency, and do so in a way that allows FFT calculations to always make use of the full power cycle buffer. With this method devices can achieve a measurement accuracy that is independent from the system frequency.

All analog channels are also calibrated against eight system frequency points (both magnitude and angle). This frequency-dependent correction compensates the frequency dependencies present in the measurement hardware in use, and is needed because the hardware used for measurements is not linear with regards to the measured analog signal frequency. A high accuracy therefore requires that the magnitude and angle measurements are calibrated against frequency. Additionally, the fundamental frequency component from the measured channel's FFT result is corrected for magnitude and angle errors by our patented calibration algorithms.

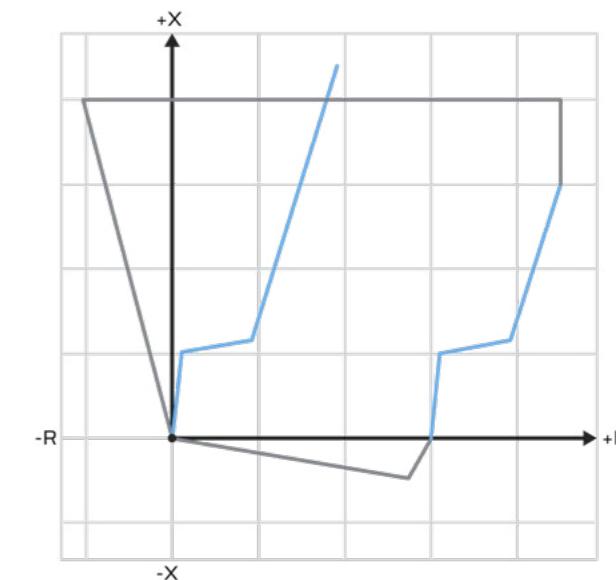
The frequency tracking functionality keeps the measurement accuracy in Arcteq protection devices with 0.2 % between 6 and 75 Hz.

The measurement accuracy in AQ 200 devices remains within 0.2 % even at extremely low currents.

New era of line protection for evolving power grids


As power grids evolve, protection and control strategies face unprecedented challenges that make traditional solutions less effective and reliable. Addressing these challenges demands more sophisticated and intelligent protection functions—precisely what Arcteq's innovative line protection solutions deliver for modern power distribution systems.

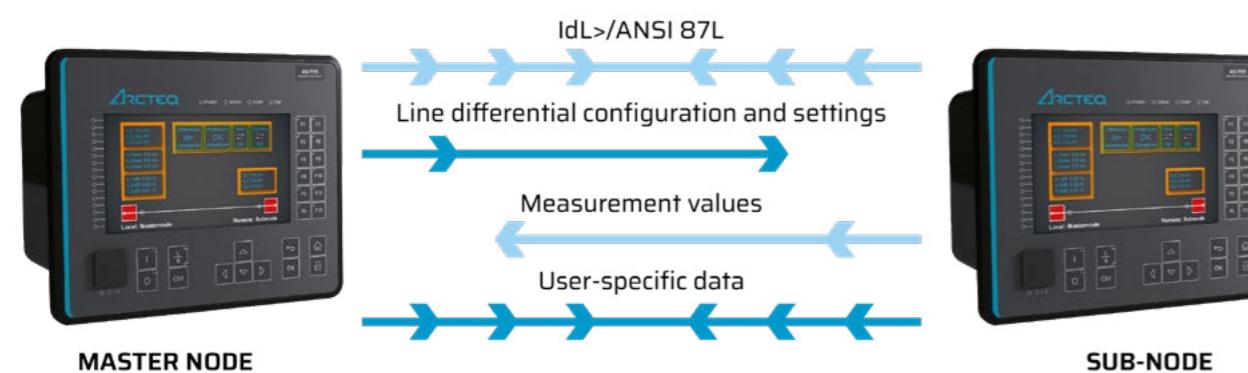
LINE SEGMENT-BASED DISTANCE PROTECTION – TRUE PARADIGM SHIFT IN ACCURACY


Distance protection has long been regarded as a key function in protection of high voltage power grids. As distribution networks rapidly evolve, these advanced protection methods are now being adopted at lower voltage levels as well. However, even with their adaptive features, traditional distance protection schemes are increasingly challenged by the growing complexity of today's networks—characterized by distributed and renewables-

based generation, microgrids, and multi-terminal lines. In such environments, conditions can shift quickly due to varying fault currents, bi-directional power flows, and fluctuating generation and load patterns, making parameter setting ever more demanding.

Arcteq's pioneering line segment-based distance protection transforms adaptability. Protection schemes can now be adjusted individually for each line segment, using real, independent line segment impedance values instead of relying on averages. This innovation enhances resistive reach and fault location accuracy, particularly in mixed networks. By eliminating the need for broad safety margins of conventional distance protection, the solution reduces unwanted operations, improves selectivity, and boosts overall reliability. Furthermore, segment-based distance protection can distinguish between faults in underground cables and overhead line segments, enabling correct auto-reclose action or deferring reclosing at self-healing faults.

Comparison of conventional distance protection characteristics based on calculated averages (on the left) and Arcteq's line segment-based distance protection characteristics (on the right). The line segment-based distance protection ensures correct operation of the protection in increasingly complex network conditions, which maximizes the dependability and security of distance protection.

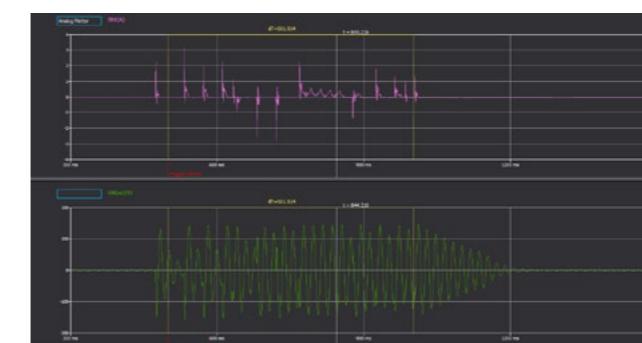

LINE DIFFERENTIAL PROTECTION WITH DEDICATED PROCESS BUS

Arcteq's line differential protection is engineered to deliver the high performance, fast operation and everything else that is expected from a modern line differential protection. It provides a cost-efficient solution, for instance, for substations connecting wind or solar power facilities to the grid. The plug-and-play device is easy to configure, and it's delivered with standard communication settings. The user simply needs to designate the master-node unit to set up communication, saving time during commissioning.

The process bus developed by Arcteq introduces a significant innovation, enabling extensive two-way data exchange between

the substations. It transfers both standard data and up to 64 user-defined signals and automatically synchronizes line differential protection settings from the master node to the sub-node device, reducing setup time and minimizing errors. The process bus also compensates for communication delays, so no external time synchronization is required.

The process bus also enables fast and easy implementation of other applications, for instance, ultra-fast transfer trip with 3-5 ms trip of the remote end.


Arcteq innovation, a dedicated process bus for line differential protection communication, enables extensive two-way data exchange and synchronizes the device line differential settings between the substations.

Intermittent earth fault protection**BACKGROUND**

While underground cabling makes distribution networks less vulnerable to disturbances, they also lead to higher earth fault currents. Compensating networks with Petersen coils keep the earth fault currents lower. A typical intermittent earth fault is a self-extinguishing flash-over fault (phase-to-earth) lasting 0.05...1.00 ms. This causes heavy transient spikes in the electrical network. Traditional directional earth fault protection, designed for non-intermittent faults, is usually grounded on FFT-processed (Fast Fourier Transformation) results which in turn are based on the RMS values of the fundamental frequency. This makes traditional protection unable to operate correctly during intermittent faults.

PATENTED SOLUTION

Arcteq's patented measurement technology is the foundation for our accurate algorithms that can protect against intermittent earth faults. By combining very accurate measurements with a 3.2-kHz sampling rate, the algorithms search for spikes generated by intermittent earth fault strikethroughs in the fundamental frequency components I_{O1} and U_{O1} . The algorithms can cut through all unnecessary data and concentrate on the spikes: they determine the polarity of the spikes by calculating the delta in raw sample values, and with the help of our innovative and patented admittance-based formula, they can detect and isolate the fault with high accuracy.

These example graphs show that the intermittent earth fault protection has worked as intended: the function's trip time has been set at 500 ms, and both graphs show that the device has detected the fault and tripped within that time.

Extensive field tests have proven our algorithms effective. The first AQ 200 devices equipped with the intermittent earth fault function were installed in 2014, and more have been installed in various networks ever since.

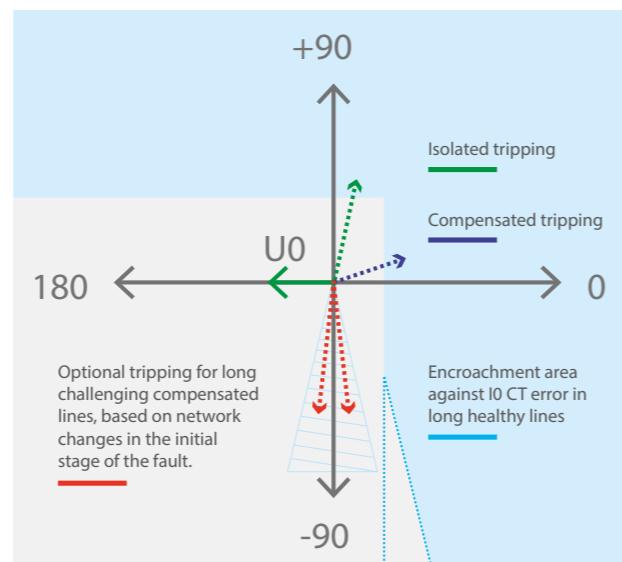
AQ-F215 for feeder protection is one of our devices equipped with the intermittent earth fault protection function.

Testing the algorithms in the field in 2014 with VSV, an energy company located in southwestern Finland.

Broad-range earth fault detection with multiple criteria

BACKGROUND

An increasing amount of medium-voltage cabling as well as blending distributed generation and compensated networks into distributed compensation have led to new challenges in earth fault protection for distribution feeders. More and more, distribution system operators are using complex combinations of short cable feeders, long overhead feeders, and mixed cable and overhead networks. In these systems, relying on conventional protection methods may lead to various problems, such as healthy feeders nuisance-tripping, and actual faults going undetected.


If the protection of compensated long-distance cables and overhead lines is based only on measuring the angle and magnitude of residual voltage and currents, it can be very difficult to tell the difference between healthy and faulty feeders. Often, earth fault protection requires information about the network's status: is the network isolated or compensated? When changing between the two statuses, the setting groups must also be changed, and this may be difficult or downright impossible in the case of compensated distribution networks.

NEW BROAD-RANGE MODE WITH MULTI-CRITERIA DETECTION

The solution to this problem is Arcteq's new broad-range mode. Available in the AQ 200 series, it can protect against earth faults in both isolated and compensated networks without setting changes. The algorithm is made even more reliable by our new multi-criteria detection. This optional additional tripping condition for compensated network uses our patented intermittent earth fault algorithm, and supplements it by calculating the symmetrical components from phase currents and voltages. If this additional mode is activated, the tripping criteria includes the residual current (measured in the third or fourth quadrant) as well as the symmetrical components of voltages and currents that detect a fault. Unlike the traditional method, no additional parameter defining is required.

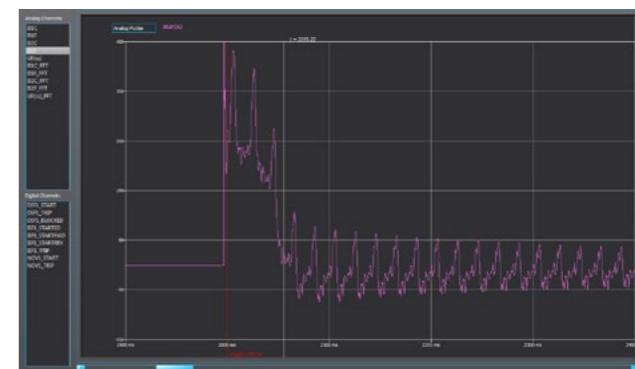
You can test the multi-criteria algorithm with COMTRADE files supplied by Arcteq. The algorithm function requires a combination of three-phase currents, the residual current, and the zero sequence voltage to operate correctly. Additionally, you can add an encroachment area for compensated, long, healthy feeder lines: this helps you avoid unnecessary trips that errors in current transformers can cause. The broad-range mode with multi-criteria detection together with the intermittent earth fault protection function provide feeders in compensated networks complete coverage against earth faults.

The solution to the problem is Arcteq's new broad-range mode. Available in the AQ 200 series, it can protect against earth faults in both Isolated and compensated networks without setting changes.

Operation of the new broad-range mode with multi-criteria detection increases protection reliability.

Disturbance recorder and power quality

DISTURBANCE RECORDER'S CAPACITY


The disturbance recorder in AQ 200 series devices is a high-capacity and fully digital recorder that is integrated into the device. The recorder supports 96 digital channels and 20 measured analog channels. The maximum sample rate for analog channels is 64 samples per cycle, but all measured and calculated values can be registered as digital channels with a 5 ms sample time. This feature is especially useful during a motor's start-up sequence, as users can track both the fully sampled analog waveform values and the RMS values sampled every 5 ms at the same time. Thanks to the notable memory capacity, devices can store up to 100 non-volatile records: a full sample rate and the maximum number of recorded channels result in a total of 500 seconds of recording time. The records are saved as COMTRADE files (based on the IEEE C37.111 standard), which makes them compatible with most viewers and relay test sets.

DISTURBANCE RECORDER SETTING EXAMPLES

Samples per cycle	64	64	64
Number of analog channels	8	8	8
Number of digital channels	24	24	24
Record duration	5 s	10 s	60 s
Total number of records	100	52	8

DOCUMENTING VOLTAGE SAGS AND SWELLS WITH THE DISTURBANCE RECORDER

The AQ 200 series disturbance recorder is a great tool for analyzing the performance of the power system in network disturbance situations. Voltage sags and swells are a common monitoring target when analyzing power quality. Any signal in the device can be used to trigger the disturbance recorder, including the protection functions for overvoltage, undervoltage, and programmable stages. With Arcteq's quickly operating protection functions, the device can record and document voltage sags and swells of as fast as 10...15 ms.

An example record with a high harmonic content.

HARMONIC MONITORING

AQ 200 devices measure harmonics of up to the 31st order for both currents and voltages. Our innovative and unique harmonic overcurrent function (50H/51H/68H) can be used for alarming, tripping, and triggering the disturbance recorder. The function's stages can be set freely, and they can monitor and act on any current harmonic you want from the 2nd to the 19th order. Additionally, the disturbance recorder can record harmonic content up to the 31st order.

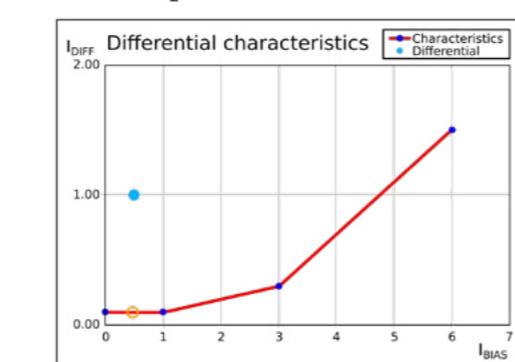
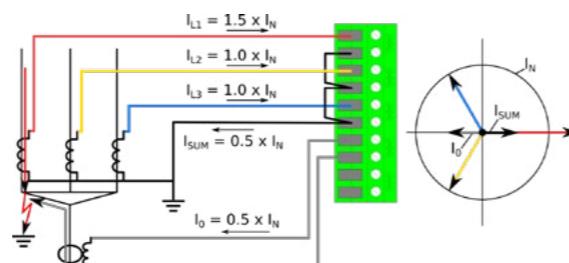
The AQ 200 series disturbance recorder is a great tool for analyzing the performance of the power system in network disturbance situations.

Cable-end differential protection

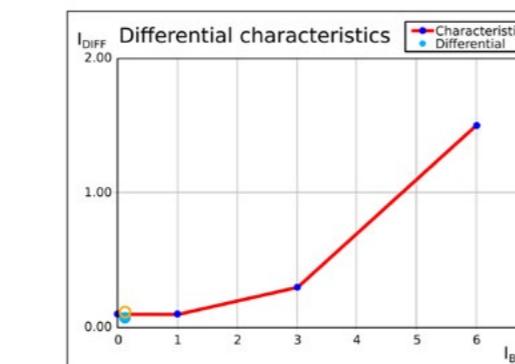
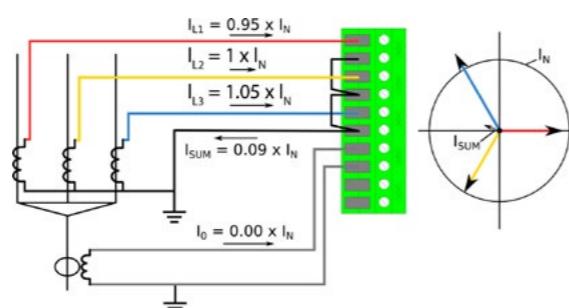
CABLE-END FAULTS AND ARC FLASH INCIDENTS

Arc flash faults inside switchgear can be caused by a variety of reasons: human errors, equipment failures, aging materials, lack of maintenance, or by having anything from dirt to foreign objects or animals in the switchgear. Empirical data suggests that the most common fault location without human intrusion is the cable compartment. Cable-end faults are usually the result of degrading insulation levels or faulty cable connections, and these faults often start when a small earth leakage develops into a full single-phase fault. If it is not detected and tripped in time, the single-phase fault can develop further into a cross-country fault or a three-phase fault.

COMPENSATED CABLE-END DIFFERENTIAL PROTECTION



Arcteq has developed a proactive cable-end protection that aims to provide a way to detect a cable-end fault early. Traditionally, cable-end protection has been implemented via an alarming function that only indicates a need for preventative maintenance rather than detecting the fault itself. The operating principle of our cable-end protection is based on low-impedance differential protection function with settable bias characteristics. The differential current is calculated with the sum of the phase currents and the selected residual current input (measured by a core balance current transformer).

The cable-end differential protection function provides natural measurement unbalance compensation which allows our devices to have a higher operating sensitivity for monitoring cable-end faults. When calculating the residual current from the phase currents, a natural unbalance can be as high as 10 % in Class 5P current transformers. However, when this function's differential setting parameters are set to be sensitive, the natural unbalance current is compensated and does not affect the calculations.



If a cable-end starting fault occurs, the function detects the difference between the ingoing and outgoing residual currents. The resulting signal can then be used to alarm or trip the feeder with the failing cable end. Users can freely set the parameters of the function, and therefore decide how sensitive they want the algorithm to be.

NO ADDITIONAL HARDWARE OR WIRING NEEDED

The function uses the elements that are already available in the protection scheme, namely the three-phase CTs and the residual core balance CT. This means that there is no need for additional hardware or wiring. The sensitive compensated cable-end differential protection function can be used with no extra cost to provide more safety for both switchgear and personnel.

The images above show cable-end differential protection without natural unbalance compensation. The phase current CT errors cause a significant differential current. Compensation is essential to have a sensitive protection setting.

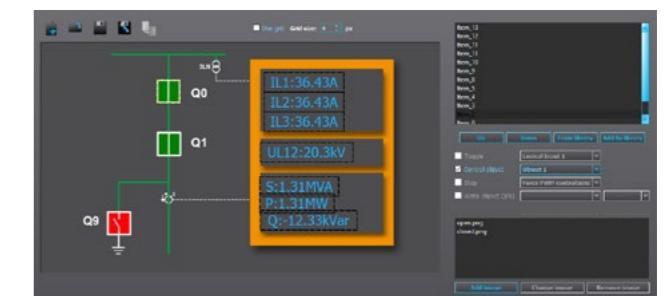
The images above show compensated cable-end differential protection during a small earth-leakage current. With the natural unbalance compensation, the function can alarm correctly even during small differential currents.

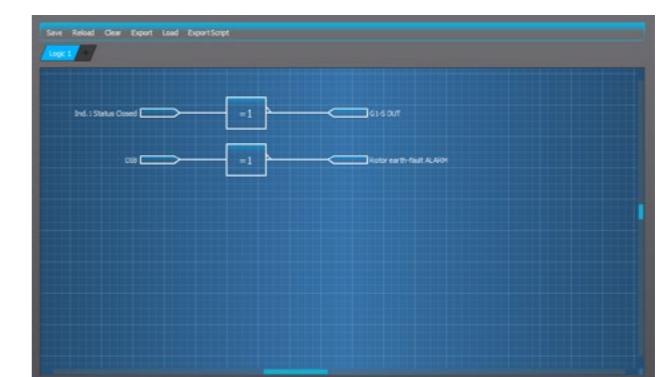
AQ-S254A - A new generation of alarm annunciators

BACKGROUND

Several markets use an alarm unit or an alarm annunciator as the standard device in substations. The annunciator's purpose is to collect alarm signal data from the entire substation into a single place, which makes it easy to handle an overview of all alarms. The annunciator unit is used in various substation applications: power plants and electrical utilities as well as industrial applications which require a collected monitoring of alarm signals.

The alarm annunciator AQ-S254A is a multipurpose device which extends the alarm functionality and the I/O capacity of a distribution or transmission substation. Its fully modular hardware construction gives you a high level of flexibility as functionality can be added or changed at any point as needed.


In addition to handling alarms, AQ-S254A comes equipped with a wide range of communication protocols. It also has a full-color, freely configurable mimic display to indicate switch statuses and other indicator changes. AQ-S254A is also capable of controlling up to 20 objects, such as circuit breakers and disconnectors.

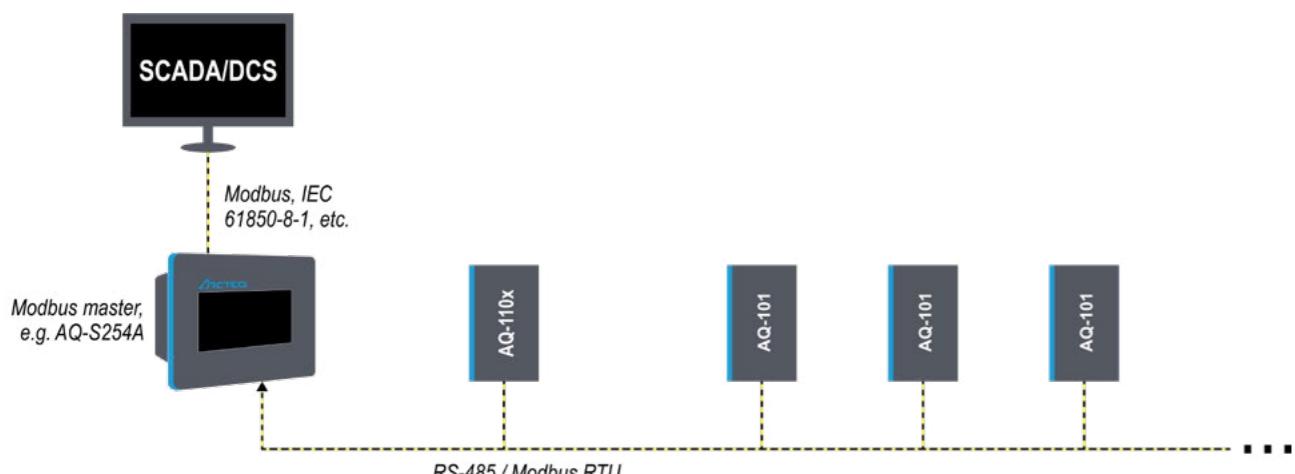

ONE OF A KIND

To best meet the needs of demanding substation conditions, the AQ-S254A alarm annunciator has been designed and tested according to the IEC 60255 measuring relays and protection equipment standard. You can wire up to 115 binary signals to the annunciator. The 7 inch multicolor dynamic display allows you to see 128 alarms (including 64 GOOSE messages) at the same time. You can assign the various alarming states any of the 5 available colors, and add short descriptions (max. 31 characters) to each alarm. You can add up to 5 local HMI screens with mimic pictures to the device display.

AQ-S254A includes various communication protocols, including IEC 61850 communication with GOOSE messaging. You can connect to the device with an Ethernet or serial connection via its standard communication ports. You also have access to a redundant IEC 61850 protocol with HSR/PRP/RSTP. Other communication protocols include IEC 101/104, IEC 103, DNP3, Modbus, and SPA.

The graphical mimic editor helps you to create informative color displays for various indicators and objects.

You can extend the functionality of an AQ-S254 device even further with the logic editor.


Making data from the arc flash protection system visible for taking further actions

The Modbus RTU communication in AQ 100 series devices enables the integration of the arc flash protection system into an overall system. This allows all data about alarms, sensors, and input/output signals available locally in the arc protection device to be transferred to a SCADA or distributed control system (DCS). Connection to a SCADA/DCS in an IEC 61850-system is accomplished via an AQ 250 protection and control device. The AQ 250 device also functions as a Modbus master in larger systems with several arc flash protection sub-units.

Incorporating an AQ 250 series device, such as the AQ-S254A alarm annunciation device, into the arc protection system also enhances the arc flash protection system with a large, freely programmable multicolor local HMI display. This additional display can be used for self-supervision, light sensor and current channel status indication, and managing trip alarms with event logs from all AQ 100 series devices in the system.

A single-line diagram indicating a faulty section in an AQ 100 arc protection system.

AQ-C255 The power factor controller

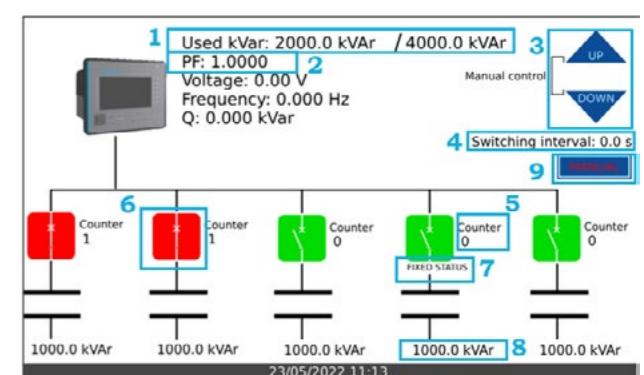
AQ-C255 device is the power factor controller (PFC) of an automatic capacitor bank system. It performs the switching of capacitors to reach a user-defined target $\cos\phi$. With the integration of a power factor controller, it is possible to optimize processes, speed up troubleshooting and reduce the costs of the supervised systems. The power factor controller monitors the reactive power of the installation and controls the power factor. The control is done by connecting and disconnecting the power capacitor banks. When the power factor decreases, the controller activates the capacitors sequentially. The controller will continue to add capacitors in parallel to the load until a required value of the power factor is attained.

AQ-C255 has a highly advanced algorithm that allows user to have from 1 to 5 capacitor banks with flexible VAr values, with the option of various control schemes i.e. First-in, First-out (FIFO), First-in, Last-out (FILO) and minimum step mode suitable for capacitor banks of same and different values. In addition to power factor correction, it is possible to indicate current, voltage, power, frequency, and other values. The AQ-C255 operates like the brain of the power correction system. The PFC function can operate while one or more capacitor banks are under maintenance and it comes with built-in resettable counter (for open & close) for each bank to monitor the performance.

BASIC OPERATION

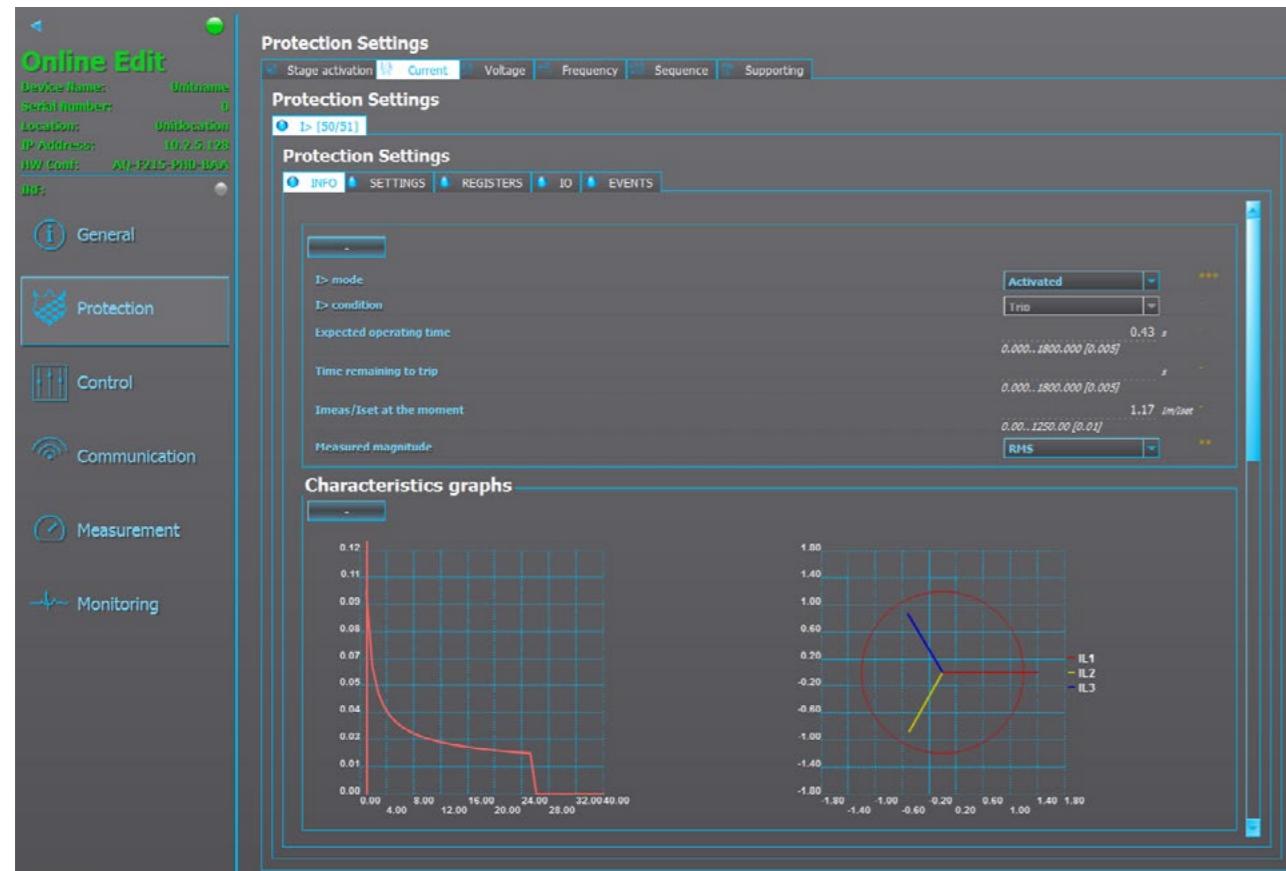
- PFC is operated when adjustment of VAr is required - which is defined by $\cos\phi$ setpoint
- The operation is blocked when the discharge time is active, which can be programmed for each bank individually
- A programmable switching time is also possible, which ensures a defined time duration between connecting or removing capacitor banks consecutively

REAL TIME DISPLAY


- Maximum VAr available in the system (combined)
- Utilized VAr, available VAr, individual VAr values (each bank)
- Power factor, power factor direction, bank condition, counters.

CONTROL SCHEMES

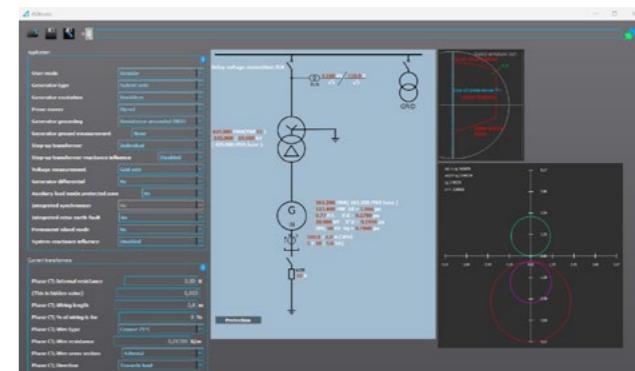
- First-in, first-out (FIFO) - suitable for the capacitance of equal values, and ensures minimum optimal usage
- First-in, last-out (FILO) - suitable for the capacitance of equal values, and switches sequentially
- Minimum step - suitable for capacitance of different values and the algorithm is designed to step up the minimum possible value of the capacitance



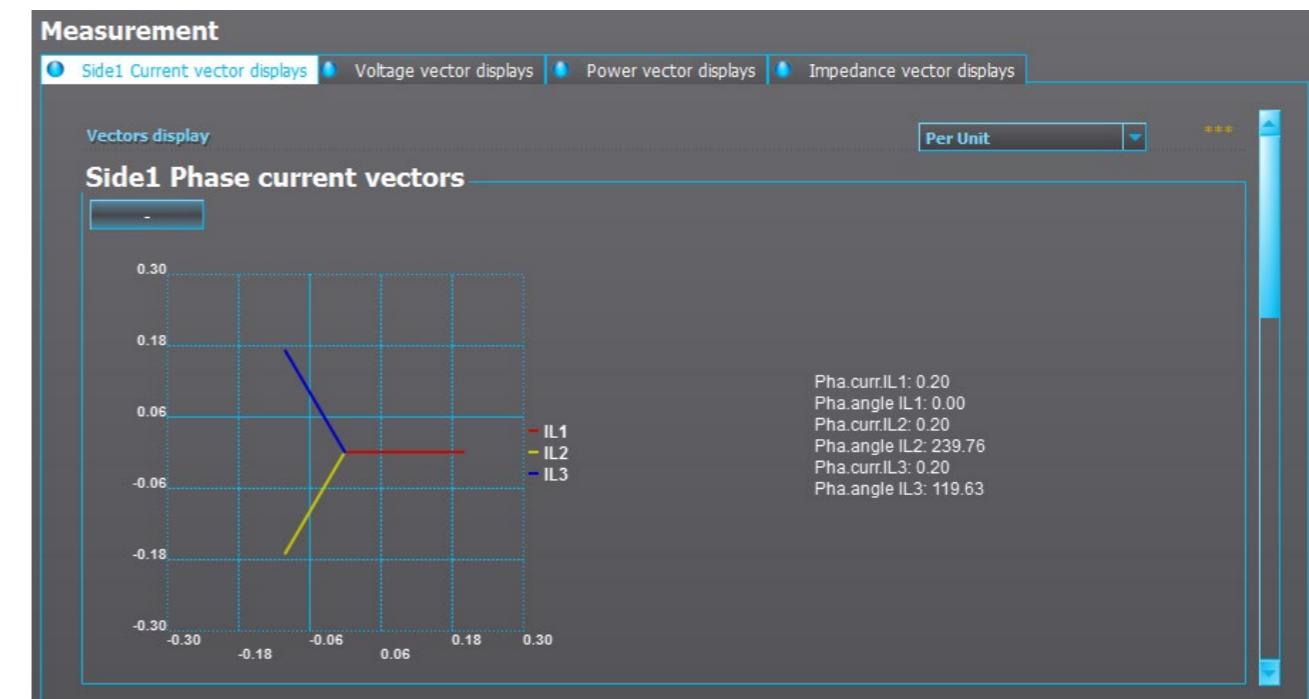
The AQ C255 Power Factor Controller

1. Total VAr value (used) and maximum available VAr (reserve)
2. Measured power factor
3. Increase/decrease power factor, in case of manual control (By using push buttons F1 and F2)
4. User-defined switching interval for consecutive opening/closing of the capacitor banks
5. Resettable counter (for open & close) for usage of each capacitor bank
6. Connection status of each capacitor bank
7. Maintenance status, which can be defined by inputs
8. Individual VAr for each capacitor bank
9. Automatic or Manual mode (The mode can be changed by push button F3 in the front panel)

Setting and configuration software


AQtivate 200 groups functionalities clearly and only shows activated functions, guaranteeing a familiar working experience while using the software.

All AQ 200 series devices can be configured and set conveniently with the help of our powerful AQtivate 200 software. AQtivate 200 is easy to use, and you can download and use it completely free. With this software you can set your protection functions, configure the I/O, program additional logic diagrams, configure the HMI display, set the parameters for communication protocols, and view the sophisticated online monitoring.


AQtivate 200 puts all device functionalities into clear groups: you can access protection functions, control functions, and monitoring functions from their own main menus. When you activate a function stage, all its settings and other information is accessible within its own tab in the relevant main menu. As only activated functions are displayed, the software provides you with a convenient setting and commissioning experience.

Integrated into the AQtivate 200 software are the several tools which make device configuration and function setting even better and easier. The graphical Mimic Editor tool helps you to easily build informative color displays for your device display, whereas the Logic Editor tool allows you to extend your device functionality further with common logic gates. You can configure the HMI display with the Carousel Designer tool.

Additionally, AQtivate 200 also includes three unique wizards for transformers, generators, and motors. They are advanced setting tools that use a selection of transformer and machine-related information and other settings as the basis for building suitable setting parameters for your device. Furthermore, their own manuals are integrated into the wizard tools themselves to make their use as easy as possible.

Generator wizard view.

Online status displays save engineering time, from testing and commissioning to project commissioning.

AQtivate 200 can be used offline or online via the RJ-45 Ethernet port connections. The software also displays the online status of measurement values, function statuses and matrix signals. This saves you time during troubleshooting, project commissioning, and testing situations. AQtivate 200 comes with AQViewer, a

separate software which provides you with a place for COMTRADE disturbance recorder analysis. The Setting and configuration software AQtivate 200 configuration and setting software runs on recent Windows operating systems.

NON-DIRECTIONAL OVERCURRENT PROTECTION (I>; 50/51)

Used for instant, DT, and IDMT (IEC/ANSI/custom) overcurrent and short-circuit protection, the function has 1...4 stages (depending on the device model) and a wide setting range of 0.1...50 $\times I_n$. Its operation is based on the constantly measured phase currents (RMS, TRMS, or peak-to-peak values). The function includes an option for internal harmonic blocking (2nd and 5th).

NON-DIRECTIONAL EARTH FAULT PROTECTION (IO>; 50N/51N)

Used for instant, DT, and IDMT (IEC/ANSI/custom) earth fault protection, the function has 1...4 stages (depending on the device model). Its operation is based on the constantly measured selected neutral currents (RMS, TRMS, or peak-to-peak values). The available analog measurement channels are the residual current measurements (IO1 and IO2) as well as the residual current calculated from the phase current (IOCalc).

SINGLE-POLE NON-DIRECTIONAL OVERCURRENT PROTECTION (IPW>; 50/51)

Used for instant, DT, and IDMT (IEC/ANSI/custom) overcurrent and short-circuit protection, the function has 1...2 stages (depending on the device model) and a wide setting range of 0.1...50 $\times I_n$. Its operation is based on the constantly measured phase currents (RMS, TRMS, or peak-to-peak values). The function includes an option for internal harmonic blocking (2nd and 5th).

DIRECTIONAL OVERCURRENT PROTECTION (IDIR>; 67)

Used for instant, DT, and IDMT (IEC/ANSI/custom) overcurrent and short-circuit protection, the function has 4 stages. Its operation is based on the constantly monitored phase currents (RMS, TRMS, or peak-to-peak). The function uses the direction of the calculated positive sequence voltage and setting parameters to determine the forward direction of the pick-up sector.

DIRECTIONAL EARTH FAULT PROTECTION (IODIR>; 67N/32N)

Used for instant, DT, and IDMT (IEC/ANSI/custom) earth fault protection, the function has 4 stages. Its operation is based on the constantly measured selected neutral currents and voltages

(RMS, TRMS, or peak-to-peak), and the selected earthing type. The magnitudes come from the residual current measurement (IO1 or IO2), or from the residual current calculated from the phase current measurements (IOCalc). The current angle is compared to the angle of the measured/calculated zero sequence voltage. Tripping requires a set minimum amount of zero sequence voltage.

INTERMITTENT EARTH FAULT PROTECTION (IOINT>; 67NT)

Used for intermittent transient earth faults protection, the function has 1 stage. Its operation is based on our patented measurement and sampling technology to detect transient spikes in IO and UO: it determines the spikes' polarity by calculating the delta of raw samples and is thus able to tell a faulty feeder from a healthy one. Users can set the function's operating time freely to guarantee co-ordination with back-up residual voltage protection. These faults usually happen in compensated (Petersen coil earthed) MV networks, which are becoming more and more common in the world.

NEGATIVE SEQUENCE OVERCURRENT PROTECTION, PHASE CURRENT REVERSAL PROTECTION, CURRENT UNBALANCE PROTECTION (I2>; 46/46R/46L)

Used for instant, DT, and IDMT (IEC/ANSI/custom) unbalanced network protection and for detecting broken conductors, the function has 1...4 stages (depending on the device model). Its operation is based on the constantly measured negative and positive sequence currents. The function has two operating modes: the I2 mode monitors the negative sequence current, while the I2/I1 mode (the broken conductor mode) monitors the minimum loading current in the phase currents. Additional calculations and records are done (symmetrical component magnitudes, zero sequence current).

HARMONIC OVERCURRENT PROTECTION (IH>; 50H/51G/68H)

Used for instant, DT, and IDMT (IEC/ANSI/custom) non-directional overcurrent detection and clearing, the function has 1...4 stages (depending on the device model). Its operation is based on the constantly measured harmonic components (absolute or relative to RMS) of the selected measurement channels (2nd, 3rd, 4th, 5th, 6th, 7th, 11th, 13th, 15th, 17th, or 19th harmonic).

CIRCUIT BREAKER FAILURE PROTECTION (CBFP; 50BF/52BF)

Used for monitoring the circuit breaker's operation after it has received a tripping signal, the function has 1 stage. The function can also be used to re-trip a failing breaker: if the tripping fails, an incomer breaker can be tripped with the function's CBFP output. The re-tripping functionality can be disabled if the breaker only has one trip coil. Users can set the operating times as required.

LOW-OR HIGH-IMPEDANCE RESTRICTED EARTH FAULT PROTECTION, CABLE-END DIFFERENTIAL PROTECTION (IOD>; 87N)

Used for residual differential current measurement for transformers or for cable-end differential protection, this function has 1 stage. Its operation is based on the constantly monitored phase currents and selected residual currents as well as the calculated bias current and differential currents. A differential current is calculated with the sum of the phase currents and the selected residual current input. In the cable-end differential mode the function provides natural measurement unbalance compensation for a higher operating sensitivity when monitoring cable-end faults.

OVERVOLTAGE PROTECTION (U>; 59)

Used for instant, DT, and IDMT overvoltage protection, the function has 4 stages. Its operation is based on line-to-neutral or line-to-line voltage magnitudes (RMS). When the protection is based on line-to-line voltages, it is not affected by earth faults in isolated or compensated networks.

UNDERVOLTAGE PROTECTION (UO>; 27)

Used for instant, DT, and IDMT undervoltage protection, the function has 4 stages. Its operation is based on line-to-neutral or line-to-line voltage magnitudes (RMS). When the protection is based on a line-to-line voltage, it is not affected by earth faults in isolated or compensated networks. The function has two blocking stages: internal blocking (voltage measurement and low voltage) and external blocking (e.g., VT fuse failure).

LOW-VOLTAGE RIDE-THROUGH (LVRT; 27T)

The LVRT function supervises voltage disturbances in the power system according to the freely configurable voltage profile. By comparing the system voltage to the voltage profile, the function allows the distributed generation resources to remain on-line in case of short-term voltage disturbances.

NEUTRAL OVERVOLTAGE PROTECTION (U0>; 59N)

Used for instant, DT, and IDMT non-directional earth fault protection, the function has 4 stages. Its operation is based on zero sequence component calculated from the measured phase-to-earth voltages, or a dedicated voltage input. Protection is scaled to the line-to-line RMS level. With a line-to-line system voltage of 100 V (secondary), the earth fault is 100% of U_n and the calculated zero sequence voltage is 57.74 V.

SEQUENCE VOLTAGE PROTECTION (U1/U2>/<; 47/27P/59PN)

Used for instant, DT, and IDMT voltage protection, the function has 4 stages and has positive/negative sequence protection for both overvoltage and undervoltage as selected. Its operation is based on the system's line-to-line voltage level. The function constantly measures phase-to-earth voltages (RMS) and calculates positive/negative sequence voltages from the line-to-line and neutral voltages.

OVERFREQUENCY AND UNDERFREQUENCY PROTECTION (F>/<; 810/81U)

Used for instant and DT overfrequency and underfrequency protection, the function has 8 stages (four for each). The function can be applied to feeder, bus, transformer, motor, and generator application protections. The difference between the generated power and the load demand can cause the frequency to drop/rise beyond the set limits, which is especially important to detect in generator applications. The function can also be used to indicate accidental island operation, and to control power generation to keep the system frequency consistent.

RATE-OF-CHANGE OF FREQUENCY (DF/DT>/<; 81R)

Used for instant and DT detection of fast drops or increases in frequency, the function has 8 stages (four stages for both increase and decrease in frequency). It detects and clears frequency-based faults faster than conventional over- and underfrequency protections. An unbalance between generated power and load demand is the most common cause of frequency deviations, and if the unbalance is great enough the frequency changes rapidly. The function can also be applied to detect a loss of mains situation (a part of the network loses its connection to the rest of the system), where a connected generator can cause safety hazard and automatic reconnections can cause damage to both the generator and the network.

OVERPOWER, UNDERPOWER AND REVERSE POWER PROTECTION (P>, P<, PREV>; 320/32U/32R)

Used for instant and DT active power protection, each of the functions has 1 stage. The overpower function detects overload situations in various types of applications; the underpower function detects loss of load when there is no significant loss of current; the reverse power function is used to protect the generator's turbine in situations where a synchronous generator runs like a motor, drawing active power.

POWER PROTECTION (P, Q, S>/<; 32)

Used for instant and DT three-phase overpower or underpower protection (active, reactive, or apparent), the function has 4 stages. It constantly calculates the ratio between the power settings and the measured power magnitudes.

CAPACITOR BANK OVERLOAD PROTECTION (ICOL>; 490L)

Used for instant, DT, and IDMT (IEC/ANSI/custom) overload alarming and capacitor bank protection, the function has 1 or 2 stages (depending on the device model). Its operation is based on the constantly measured phase currents (RMS, TRMS, and peak-to-peak). The main difference separating this function from the regular overcurrent function (I>; 50/51) is that users can freely program the capacitor overload curve to the function by giving the current, the time points, or the IDMT coefficients.

CAPACITOR BANK NEUTRAL UNBALANCE PROTECTION (CNU>; 50UB)

Used for instant and DT (IEC/ANSI/custom) capacitor bank neutral unbalance protection, the function has 1 stage. Its operation is activated by a settable definite time delay which is counted from the moment when the alarm or trip threshold is exceeded. The basic design of the protection function is the three-pole operation.

CAPACITOR BANK CURRENT UNBALANCE PROTECTION (IUC>; 46C)

Used for instant and DT (IEC/ANSI/custom) capacitor bank current unbalance protection when the bank has a double wye configuration, the function has 1 stage. Its operation is based on the constantly measured phase currents (RMS).

RAILWAY NON-DIRECTIONAL OVERCURRENT PROTECTION (I>; 50/51)

Used for instant, DT, and IDMT (IEC/ANSI/custom) overcurrent and short-circuit protection, the function has 4 stages and a wide setting range of 0.1...50 xIn. Its operation is based on the constantly measured phase currents (RMS, TRMS, or peak-to-peak values). As a function in the railway protection module, the function can handle current measurements in railway frequencies (16.67 Hz) and the standard three-phase system frequencies (50 Hz or 60 Hz).

RAILWAY DIRECTIONAL OVERCURRENT PROTECTION (IDRW>; 67)

Used for instant, DT, and IDMT (IEC/ANSI/custom) directional overcurrent and short-circuit protection, the function has 8 stages (when a device has both voltage and current measurement modules). Its operation is based on the constantly measured phase currents (RMS). As a function in the railway protection module, the function can handle current and voltage measurements in railway frequencies (16.67 Hz) and the standard three-phase system frequencies (50 Hz or 60 Hz).

RAILWAY VOLTAGE PROTECTION (URW>; 27/59)

Used for instant, DT, and IDMT (IEC/ANSI/custom) voltage protection, the function has 4 stages. Its operation is based on the constantly measured RMS values from the selected voltage channel. Users can select whether the function protects against undervoltage or overvoltage. As a function in the railway protection module, the function can handle current and voltage measurements in railway frequencies (16.67 Hz) and the standard three-phase system frequencies (50 Hz or 60 Hz).

MOTOR STATUS MONITORING (MST)

Designed as a single place where users can set up all necessary motor data and select the motor protection functions relevant to their application. The function parameters can also be set within each function; all changes in the individual functions are updated to this compilation function as well. In addition to motor data, the motor status monitoring function also counts how many times the motor has started, how many times the start has succeeded, and how many times the motor has stopped. It also tracks the motor's running time and starting time as well as when the motor last stopped.

MOTOR START PROTECTION, LOCKED ROTOR MONITORING (IST>; 48/14)

Used for monitoring the start-up duration and the stress it causes to the motor. The function has 1 stage, and it can also be used as locked rotor protection after starting. The function has two operating modes: definite maximum locked rotor time monitoring and inverse operating time (based on the I²t calculation). When using the latter, the maximum allowed starting time is automatically scaled to the motor's current to compensate for the starting conditions. Users can also set the speed switch input. The function operates with the motor status monitoring function, following the data set there.

FREQUENT START PROTECTION (N>; 66)

Used for monitoring and preventing the motor from starting too frequently, the function has 1 stage. It monitors how many times the motor has started within a given time frame to ensure that the start stress does not exceed the manufacturer's limits, allowing the motor to cool down sufficiently before the next start attempt. The function operates with the motor status monitoring function, following the data set there.

NON-DIRECTIONAL UNDERCURRENT PROTECTION (I<; 37)

Used for instant and DT undercurrent protection, the function has 1 stage. Its operation is based on the constantly measured phase currents (RMS). The function monitors motor loading: a sudden loss in the load can indicate problems with the actual load (a broken belt, other mechanical problems) and the motor needs to be turned off immediately to avoid further damage. In automation systems the function can be used to indicate a finished task. The function operates with the motor status monitoring function, following the data set there. Its operation is blocked when the motor is not running.

MECHANICAL JAM PROTECTION (IM>; 51M)

Used for instant and DT monitoring of the motor loading after the motor has started, the function has 1 stage. Its operation is based on the constantly measured phase currents (RMS). When a motor-run apparatus jams during its work load, the function can be used to disconnect the motor from the feeding network to avoid further damage. The function operates with the motor status monitoring function, following the data set there. Its operation is blocked during motor starting.

POWER FACTOR PROTECTION (PF<; 55)

Used for instant and DT power factor protection, the function has 1 stage. Its operation is based on the calculated three-phase power factor ($\cos \varphi$). The function cannot detect a power factor that is less than 0.05.

MACHINE THERMAL OVERLOAD PROTECTION (TM>; 49M)

Used for thermal capacity monitoring and protection of electric machines, the function has 1 stage. It constantly monitors the instant values of phase currents (RMS) and calculates the set thermal replica status in 5 ms cycles; it also includes a total memory function of the load current conditions according to IEC 60255-8. The function's highly-accurate motor and generator thermal modeling is based on up to five different time constants, and it sets up a thermal replica to calculate and display the protected object's thermal loading in relation to the object's effective current. The function is differentiated from regular overcurrent function by the calculated thermal capacity in the replica. The function operates with the motor status monitoring function, following the data set there.

UNDEREXCITATION PROTECTION (Q<; 40)

Used for instant and DT underexcitation protection, the function has 1 stage. Its operation is based on constantly calculated three-phase reactive power values. Synchronous machines require a set amount of excitation to stay stable: when a generator supplies capacitive power, the reactive power becomes negative, which in turn makes the excitation current too low, resulting in the machine dropping out of step. The function supervises the capacitive power and picks up when the set kvar value is exceeded.

UNDERIMPEDANCE PROTECTION (Z<; 21U)

Used as an instant and DT alternative for voltage-restrained overcurrent protection, the function has 2 stages. Its operation is based on constantly calculated primary impedances (phase-to-phase, phase-to-earth, positive sequence). The function can be used to detect even small short-circuit faults near the generator. Additionally, it can be used as back-up protection for transformer protection.

UNDERREACTANCE PROTECTION (X<; 21/40)

Used for instant and DT underreactance protection, the function has 2 stages. Its operation is based on constantly calculated primary impedances (phase-to-phase, phase-to-earth, positive sequence). The function monitors the distance between the defined circle and the measured impedance.

100% STATOR EARTH FAULT PROTECTION (U03RD>; 64S)

Used for instant, DT, and IDMT detecting earth faults near the neutral point, the function has 1 stage. Its operation is based on constantly measured phase currents (RMS) and the constantly measured 3rd harmonic neutral voltage of the selected voltage channel. Even in the best case scenario, at least 5 % of the stator remains outside the conventional neutral overvoltage protection function's range: this function complements the other to protect the whole stator.

VOLTAGE-RESTRAINED OVERCURRENT PROTECTION (IV>; 51V)

Used for instant, DT, and IDMT (IEC/ANSI/custom) voltage-restrained overcurrent protection, the function has 1 stage. Its operation is based on the constantly measured phase currents and voltage channel values (RMS). Because short-circuits that occur close to the generator inhibit the operation of high-set overcurrent stages, this function is used to improve sensitivity. Depending on the parameter settings, the function can act as voltage-restrained or voltage-controlled overcurrent protection. Additionally, the function can be used as an alternative for the underimpedance protection function for more sensitive short-circuit detection in generator applications.

VOLTS-PER-HERTZ OVEREXCITATION PROTECTION (V/HZ>; 24)

Used for instant and DT overexcitation protection, the function has 1 stage. Its operation is based on the constantly measured phase-to-phase voltages (RMS). Machine manufacturers specify the specific V/Hz ratios under which they are not expected to operate. Exceeding these limits results in machines overexcitation which causes excessive voltage and current heating to damage the machine's insulation (within seconds in generators). The most common situation for overexcitation takes place when a machine is offline before synchronization.

POLE SLIP PROTECTION (78)

Used for protecting machines and transformers against pole slipping within a set slip detection area, the function has 1 stage. Its operation is based on impedance calculated from measured phase currents and phase-to-phase or phase-to-neutral voltages. Pole slip refers to the phenomenon where synchronism is lost due to power swings. Especially for generators this causes stress and possible damage to the machine.

DISTANCE PROTECTION (Z<; 21)

Line segment-based distance protection provides fast, selective and reliable protection by operating based on the principle of impedance measurement between the relay location and the fault point. The function allows protection schemes to be adjusted individually for each line segment using their real, independent impedance values instead of average values. This reduces the risk of unwanted operations through enhanced resistive reach and fault location accuracy, and improves selectivity and overall reliability. The segment-based distance protection can also distinguish between faults in underground cables and overhead line segments. Fault location is determined by calculating the impedance of line segments from the voltage-to-current ratio, and with the help of predefined protection zones. The device continuously calculates PP and PE impedance loops of the line; once the fault type has been detected, the device releases the respective loop to operate. Line segment-based distance protection also includes power swing block and out-of-step protection functions.

LINE DIFFERENTIAL PROTECTION (IDL>; 87L)

The very sensitive line differential protection provides main protection for two line terminal ends. The devices at both line ends sample the phase currents and calculate the Fourier basic harmonic components. These components are exchanged between the devices and synchronized via communication channels. The differential protection function has a biased characteristic with two break points. Additionally, an unbiased overcurrent stage can be applied. This functionality minimizes unwanted power outages and damage to the line.

LINE THERMAL OVERLOAD PROTECTION (TF>; 49F)

Used for thermal capacity monitoring and protection of cables and overhead lines, the function has 1 stage. It constantly monitors the instant values of phase currents (RMS) and calculates the set thermal replica status in 5 ms cycles; it also includes a total memory function of the load current conditions according to IEC 60255-8. The function's thermal modeling sets up a thermal replica to calculate and display the protected object's thermal loading in relation to the current going through the object. The function is differentiated from regular overcurrent function by the calculated thermal capacity in the replica.

TRANSFORMER STATUS MONITORING (TRF)

Designed as a single place where users can set up all necessary transformer data and select the transformer protection functions relevant to their application. The function parameters can also be set within each function; all changes in the individual functions are updated to this compilation function as well. The function calculates many transformer-related properties used to monitor and protect the transformer. In addition to name plate data, the transformer status monitoring function also counts how many times the transformer has overloaded (cumulative) and keeps track of its high overcurrent time. While standard transformers only require name plate data and CT scalings, you can manually set additional parameters to meet rarer transformer parameters encountered in special transformers.

TRANSFORMER THERMAL OVERLOAD PROTECTION (TT>; 49T)

Used for monitoring and protecting the thermal capacity in power transformers, the function has 1 stage. It constantly monitors the instant values of phase currents (TRMS) and calculates the set thermal replica status in 5 ms cycles; it also includes a total memory function of the load current conditions according to IEC 60255-8. The function's thermal modeling sets up a thermal replica to calculate and display the protected object's thermal loading in relation to the current going through the object. The function is differentiated from regular overcurrent function by the calculated thermal capacity in the replica. The function operates with the transformer status monitoring function, following the data set there.

TRANSFORMER/MOTOR/GENERATOR DIFFERENTIAL PROTECTION (IDX>; 87T/87M/87G/87N)

The function is used for differential protection of two-winding transformers, motors and generators. Its operation is based on the constantly calculated phase currents (phase bias currents, phase differential currents, maximum differential currents allowed by the set current bias level) and HV/LV side currents (REF bias currents, REF differential currents, maximum REF differential currents allowed by the set current bias level).

RESISTANCE TEMPERATURE DETECTORS (RTD)

Used for measuring both ambient temperatures and machine temperatures (°C or °F), the function has 12 stages. Its operation is usually based on a thermocouple or a PT100-type RTD. The function supports up to 2 RTD modules, each of which can hold up to 8 measurement elements. You can set max. 16 individual element monitors for this alarm function; each can be set to give 2 separate alarms from one selected input.

ARC FAULT PROTECTION (IARC>/IOARC>; 5OARC/5ONARC)

Used for protecting against arc faults, the function has 1 stage. Arc faults can occur for many reasons (such as insulation failure, foreign objects in switchgear, mechanical aging), and their fast detection is necessary to minimize their effects. However, detecting arc faults from measured currents and voltages is slower than detection by arc sensors as in the arc protection module and this function. The module includes high-speed outputs to extend the speed of arc protection by tripping signals faster.

PROGRAMMABLE STAGE (PSX>/<; 99)

Used for programming more advanced custom applications, the function has 10 instant or DT stages. Each stage can be set either as an individual stage or together with programmable logic. A stage can be set to follow 1...3 analog measurements, and it has 3 pick-up term options: greater than, lesser than, and rate-of-change of the selected signal.

VOLTAGE MEMORY (V. MEM.)

Used for helping calculate fault directions and/or distances in situations where the system fault is absent (such as close-in faults) and using non-directional protection for tripping would reduce the network selectivity. The function's operation is based on an adjustable voltage level with pre-fault voltage angles. Certain protection functions (such as directional overcurrent) use the measured current and voltage values to determine whether a fault occurs within a protected area by comparing the angle between the operating and the measured quantities, and for them this backup function is important. The duration reference can also be set manually, and you can even initiate time-delayed back-up tripping with the voltage memory function.

SETTING GROUP SELECTION (SGS)

Used for controlling the availability and selection of setting groups, of which all AQ 200 series devices have 8. By default, only one setting group ("SG1") is active, and the selection logic is idle. When you have enabled one or more additional setting groups, the selection logic activates the groups based on the logic and conditions you have programmed. You can also switch between the enabled setting groups with any digital signal (including GOOSE messages) or force a change with local controls (AQtivate 200 setting tool, HMI, or SCADA).

OBJECT CONTROL AND MONITORING (OBJ)

Used to control objects, including circuit breakers and disconnectors. The exact number of objects depends on the device model and available inputs (1 object, 1...5, or 1...10 objects). The function's operation is based on the statuses of the configured digital inputs and outputs. Usually, object control requires at least two output contacts, while object monitoring requires at least 2 digital inputs. However, if required monitoring can be done with a single digital input (switch the input's active and zero states in the device's Logic editor).

SINGLE-POLE OBJECT CONTROL AND MONITORING (OBJ5)

Used to control and monitor single-pole objects, including circuit breakers and disconnectors. The function can control and monitor 1 single-pole object. The function's operation is based on the status of the configured object. The control of single-pole objects requires at least 4 output contacts, while its monitoring usually requires 6 digital inputs. The function has 3 operating modes: it can open all breakers, open each phase individually, or open all phases.

INDICATOR OBJECT MONITORING (IND)

Used to monitor the status of disconnectors. Its operation is based on the statuses of the configured digital inputs, and it has no control functionality. The exact number of indicator objects depends on the device model and the available inputs

(1...5, 1...10, or 1...20 indicator objects). Usually, indicator object monitoring requires two digital inputs, although monitoring can be done with a single digital input (switch the input's active and zero states in the device's Logic editor).

COLD LOAD PICK-UP (CLPU)

Used for detecting cold-load situations (a loss of load after distribution re-energizing) and blocking protection functions based on these cold loads, the function has 1 stage. The characteristics of various cold-load situations depend on the load types that individual feeders have, which means that this function has to be set specifically according to the monitored load type (e.g., high inrush current from the many thermostat-controlled devices in residential areas vs. industrial start-up processes that can take days).

SWITCH-ON-TO-FAULT (SOTF)

Used to speed up tripping and reducing damage in the fault location when the breaker is closed towards a fault or a forgotten earthing. It has 1 stage, and it can be used to control protection functions or to initiate direct tripping. The function's typical operating time is less than 20 ms, and the operation is based entirely on digital signal statuses.

SYNCHROCHECK (ΔV/ΔA/ΔF; 25)

Used to ensure that two systems are synchronized before closing the circuit breaker between them, the function has 3 stages. Its operation is based on the constantly measured voltages (RMS), and the function also monitors the frequency and the angle of the selected voltage channel. The availability and function of the stages depends on which voltage channels have been set to SS mode; at least one voltage channel (U3 or U4) must be active to access the function. The function supervises the synchronization condition between a specific voltage channel and the selected system voltage, or between two voltage channels.

VECTOR JUMP ($\Delta\Phi$; 78)

Used for detecting most islanding situations (that is, when power is supplied to a load only from distributed generators) and switching off the mains breaker, the function is used for instant tripping and has only 1 stage. This lets the generator only supply loads according to their rated power value, meaning that an overload does not cause any mechanical stress to the generator unit(s). The function's operation is based on the samples of the selected measured voltages (64 samples per cycle). The reference voltage can be all or any phase-to-phase or phase-to-neutral voltages. The vector jump device should be located either on the mains side of the operated breaker or on the islanding generator's side.

SYNCHRONIZER ($\Delta V/\Delta A/\Delta F$; 25)

Used to synchronize generators to power grids automatically, the function has 1 stage. Its operation is based on the constantly measured voltages from selected voltage channels (RMS). Proper synchronizing is essential to avoid inrush currents, power system oscillations as well as thermal and mechanical stress on the generator. The function controls the amplitude and frequency between the two voltages to allow a close command signal to the generator's circuit breaker.

AUTOMATIC VOLTAGE REGULATOR (AVR; 90)

AVR is used for controlling a transformer tap-changer within a set voltage window. The function's operation is based on the measured phase-to-phase voltages and phase currents (RMS). It has two operation modes: independent and parallel modes. The parallel mode allows you to control up to 4 transformer tap changers in parallel with a plug-and-play GOOSE configuration, and its operation is based on the constantly measured circulating current as well as the calculated circulating current deviation, voltage deviation, and total deviation. Additionally, the parallel control method can be selected between the master-follower mode and the circulating reactive current mode.

AUTO-RECLOSER (0 – 1; 79)

Used for opening the circuit breaker of a line with a transient or semi-permanent fault to de-energize it and its fault location so as to give the cause of the fault a possibility to drop from the line and clear the fault. After a set time the breaker is automatically closed, and the line is re-energized. If the fault is not cleared by the first cycle of de-energizing and re-energizing ("a shot"), up to 4 additional shots are applied to the line. The shots can be independent or scheme-controlled; schemes are especially useful for evolving faults. Approximately 80...95 % faults in transmission and distribution networks are faults that can be cleared with high-speed auto-reclosing, while the remaining faults can be cleared with delayed auto-reclosing by de-energizing the faulty line for a longer period of time. However, the function cannot clear permanent faults or cable network faults in mixed networks. You also need to be aware of the fault location before applying auto-reclosing as the function would only cause unnecessary stress to the lines and circuit breakers during faults that the function cannot clear.

ZERO SEQUENCE RECLOSE (U0> RECL; 79N)

Used when the earth fault current is so low that the directional earth fault protection cannot detect the fault's direction, the function has 1 stage. Together with the neutral overvoltage protection function, this function works as a back-up for finding an outgoing feeder with a fault, while at the same time disconnecting as few healthy feeders as possible (and reconnecting the disconnected healthy feeders as quickly as possible). Feeder breakers are set up to be opened and closed one after another in small time increments until the faulty feeder is disconnected. No communication between feeder devices is required.

POWER FACTOR CONTROLLER (PFC; 90PF)

Designed as the control unit of an automatic capacitor bank system, the function has 4 stages. Its operation is based on three-phase power factor calculated from measured phase-to-phase voltages, or phase-to-neutral voltages and the three phase currents. The function performs the switching of capacitors to reach a user-defined target $\cos\varphi$ by constantly monitoring the installation's reactive power and by connecting and disconnecting capacitor banks sequentially in parallel to the load to attain the set power factor. This function allows the device to use power efficiently: a standard power supply has a factor of 0.70...0.75, whereas this function allows the power supply to have a factor of 0.95...0.99.

EXCITATION CONTROL

The exciter unit provides synchronous machine control, and it can be used by any machine with an apparent power of max. 250 MVA. The 4 excitation control modes included are: the automatic voltage regulator (AVR), the field current regulator (FCR), the reactive power controller (MVAR), and the power factor controller (PF). There are also 5 excitation limiters: the underexcitation limiter (UEL), the stator current limiter (SCL), the field current limiter (IFCL and DFCL for instant and time-delayed operation), and the V/Hz limiter (VHZ). In addition, the unit includes the power system stabilizer (PSS) and voltage supervision (SUP).

CURRENT TRANSFORMER SUPERVISION (CTS)

CTS is used for supervision of current transformers and the wirings between the AQ 200 series devices. Its operation is based on the constantly measured phase currents and residual currents (RMS). The function also supervises the angles of each current measurement channel, and calculates the positive and negative sequence currents. An open CT circuit can generate dangerously high voltages into the CT secondary side. It may also cause unnecessary alarm, or even unwanted operation of the relay.

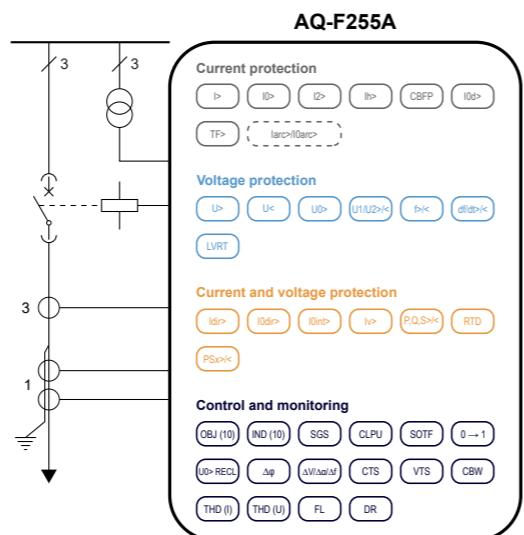
VOLTAGE TRANSFORMER SUPERVISION (VTS; 60)

Used for instant and DT detection of errors in the voltage transformer's secondary circuit wiring and during fuse failures, the function has 1 stage. Its operation is based on the constantly measured voltage channel values and on the constantly calculated positive, negative, and zero sequence voltages. The function also monitors the angle of each voltage channel. However, the function is often used as an alarming function or to disable functions that require a specific minimum amount of voltage measurement.

CIRCUIT BREAKER WEAR MONITORING (CBW)

Used for monitoring a circuit breaker's lifetime and maintenance needs due to interrupting currents and mechanical wearing, the function has 1 stage. It uses the data supplied by the CB manufacturer to monitor its operating cycles in relation to the interrupted current magnitudes. Its operation is based on the constantly measured phase currents (RMS).

CURRENT TOTAL HARMONIC DISTORTION (THD)


Used for constantly monitoring the content of the current harmonic, the function has 1 stage. Its operation is based on the constantly measured phase and residual currents: it uses the FFT measurement of the whole harmonic spectrum up to the 31st harmonic component from each current channel, and calculates either the amplitude ratio or the power ratio. When the function is activated, these measurements become available for mimic displays and are shown in the measurement view in the HMI. Harmonics can be caused by various sources in electrical networks, and you can use the function to alarm when the harmonic content rises too high. Additionally, you can set separate pick-up levels for phase currents and residual currents depending on the requirements of your application..

FAULT LOCATOR (21FL)

Used for recording an estimated distance to the point where a fault has occurred, the function has 1 stage. Its operation is based on the constantly calculated phase-to-phase or phase-to-earth loop impedances from the current and voltage measurements (RMS). The function is mostly used in directional overcurrent protection or distance protection applications, but it can also be triggered by other protections. Using the function requires that all three phase currents and all three phase voltages have been connected to the device.

DISTURBANCE RECORDER (DR)

Designed as a high-capacity and fully digital recorder, the function is integrated into all AQ 200 series devices. It has a 64 MB permanent flash memory, its maximum sample rate for its analog channels is 64 samples per cycle, and its maximum capacity is 100 recordings. The recorder provides a great tool for analyzing the performance of the power system during network disturbance situations. As the recorder outputs records as general COMTRADE files, you can use most viewers and injection devices to playback captured recordings to help you analyze the fault. The files are based on the IEEE standard C37.111-1999.

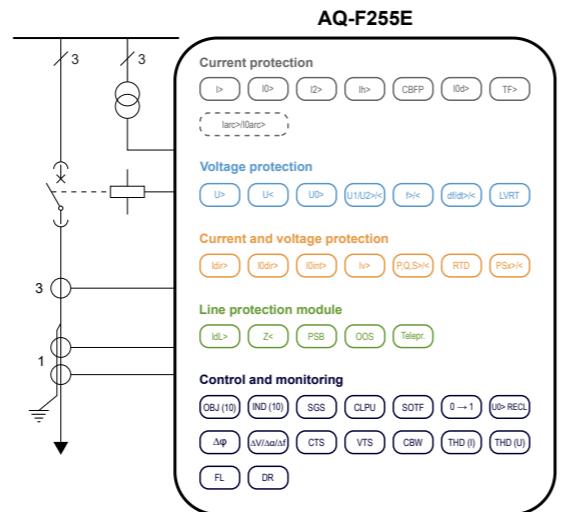
AQ-F255 FEEDER PROTECTION DEVICE

READ MORE

The AQ-F255 Feeder protection device offers a modular solution for feeder protection and control applications that require large I/O capacity. You can add up to total 11 option modules (I/O and other type of modules) into the device for extensive monitoring and control applications. The AQ-F255 feeder protection device communicates using various protocols, including the IEC 61850.

HIGHLIGHTS:

- ↗ A large I/O capacity.
- ↗ 5-shot scheme-controlled auto-recloser.
- ↗ Includes IEC 61850 2nd Edition.
- ↗ Optional automatic/manual voltage regulation and/or parallel voltage regulation (AVR).
- ↗ Optional power and energy measurement accuracy of 0.2 %.


FUNCTION PACKAGES:

- ↗ AQ-F255A - full feeder functionality
- ↗ AQ-F255R - full feeder functionality + special object for phase-specific tripping and recloser control
- ↗ AQ-F255S - full feeder functionality + synchronizer
- ↗ AQ-F255V - full feeder functionality + AVR + transformer module

Protection

	A	R	S	V
Non-directional overcurrent (I>; 50/51)	•	•	•	•
Non-directional earth fault (I0>; 50N/51N)	•	•	•	•
Single-pole non-directional overcurrent (IPW>; 50/51)		•		
Directional overcurrent (Idir>; 67)	•	•	•	•
Directional earth fault (Idir>; 67N/32N)	•	•	•	•
Intermittent earth fault (I0int>; 67NT)	•	•	•	•
Negative sequence overcurrent / Phase current reversal / Current unbalance (I2>; 46/46R/46L)	•	•	•	•
Harmonic overcurrent (Ih>; 50H/51H/68H)	•	•	•	•
Circuit breaker failure protection (CBFP; 50BF/52BF)	•	•	•	•
High- and low-impedance restricted earth fault / Cable-end differential (I0d>; 87N)	•	•	•	•
Voltage-restrained overcurrent (Iv>; 51V)	•	•	•	•
Overvoltage (U>; 59)	•	•	•	•
Undervoltage (U<; 27)	•	•	•	•
Low-voltage ride-through (LVRT; 27T)	•	•	•	•
Neutral overvoltage (U0>; 59N)	•	•	•	•
Sequence voltage (U1/U2>/<; 47/27P/59PN)	•	•	•	•
Over- and underfrequency (f>/<; 810/81U)	•	•	•	•
Rate-of-change of frequency (df/dt>/<; 81R)	•	•	•	•
Power protection (P,Q,S>/<; 32)	•	•	•	•

	A	R	S	V
Protection				
Line thermal overload (TF>; 49F)	•	•	•	•
Resistance temperature detectors (RTD)	•	•	•	•
Transformer status monitoring (TST)				
Transformer thermal overload (TT>; 49T)				•
Underimpedance (Z<; 21U)				•
Underreactance (X<; 21/40)				•
Volts-per-hertz overexcitation (V/Hz>; 24)				•
Programmable stage (P5x>/<; 99)	•	•	•	•
Voltage memory	•	•	•	•
Arc protection (IArc>/IOArc>; 50Arc/50Narc) (optional)				•
Control	A	R	S	V
Objects to control and monitor (OBJ): 10	•	•	•	•
Single-pole object control and monitoring (OBJS)				•
Indicator objects to monitor (IND): 10	•	•	•	•
Setting groups (SGS): 8	•	•	•	•
Cold load pick-up (CLPU)	•	•	•	•
Switch-on-to-fault (SOTF)	•	•	•	•
Automatic voltage regulator (AVR; 90)				•
Auto-recloser (0 → 1; 79)				•
Zero sequence recloser (U0> RECL; 79N)	•	•	•	•
Vector jump ($\Delta\phi$; 78)	•	•	•	•
Synchrocheck ($\Delta V/\Delta\alpha/\Delta f$; 25)	•	•	•	•
Synchronizer ($\Delta V/\Delta\alpha/\Delta f$; 25)				•
Monitoring	A	R	S	V
Current transformer supervision (CTS)	•	•	•	•
Voltage transformer supervision (VTS; 60)	•	•	•	•
Circuit breaker wear monitoring (CBW)	•	•	•	•
Current total harmonic distortion (THD)	•	•	•	•
Voltage total harmonic distortion (THD)	•	•	•	•
Fault locator (21FL)	•	•	•	•
Disturbance records: 100 (à 5 s 3.2 kHz sampling)	•	•	•	•
Non-volatile event records: 15,000	•	•	•	•
Measurements	A	R	S	V
Phase, sequence, and residual currents (I1, I2, I3, I01, I02)	•	•	•	•
Phase, sequence, and residual voltages (UL1, UL2, UL3, UL12, UL23, UL31, U0)	•	•	•	•
Frequency (f)	•	•	•	•
Power (P, Q, S, cos ϕ) and energy (E+, E-, Eq+, Eq-)	•	•	•	•
Power and energy measurement accuracy 0.5 %	•	•	•	•
Power and energy measurement accuracy 0.2 % (optional)	•	•	•	•
Hardware	A	R	S	V
Standard features				
Digital inputs: 3	•	•	•	•
Digital outputs: 5	•	•	•	•
Current inputs: 5	•	•	•	•
Voltage inputs: 4	•	•	•	•
Empty module slots: 11	•	•	•	•
Optional modules				
Digital input module: 8 inputs	•	•	•	•
Digital output module: 5 outputs	•	•	•	•
High-speed and High-current output module: 3 outputs with integrated TCS	•	•	•	•
Milliamperere input module: 4 inputs + 1 output	•	•	•	•
Milliamperere output module: 4 outputs + 1 input	•	•	•	•
RTD input module: 8 inputs	•	•	•	•
Arc protection module: 4 sensor channels + 2 HSO + 1 BI	•	•	•	•
External I/O modules (see the "Accessories" page)	•	•	•	•
Communication	A	R	S	V
Standard inputs				
1 port with RJ-45 Ethernet 100 MB (front)	•	•	•	•
1 port with RJ-45 Ethernet 100 MB (rear, COM A)	•	•	•	•
1 port with RS-485 (rear, COM 1)	•	•	•	•
2 x RJ-45 Ethernet (100 MB/s) + IRIG-B input	•	•	•	•
Optional modules				
2 x ST Ethernet (100 MB/s) + IRIG-B input	•	•	•	•
2 x LC Ethernet (100 MB/s, PRP/HSR)	•	•	•	•
RS-232 serial fiber (PP/PG/GP/GG)	•	•	•	•
Communication protocols				
IEC 61850 (1st Edition)	•	•	•	•
IEC 61850 (2nd Edition)	•	•	•	•
IEC 60870-5-101/104	•	•	•	•
IEC 60870-5-103	•	•	•	•
Modbus/RTU and Modbus/TCP	•	•	•	•
DNP3	•	•	•	•
SPA	•	•	•	•

AQ-F255 LINE PROTECTION DEVICE

READ MORE

The AQ-F255 Line Protection Device offers a modular solution for line protection and control applications that require large I/O capacity. It also features both distance protection and line differential protection for two line terminal ends. You can add up to 11 option modules (I/O and other type of modules) into the device for extensive monitoring and control applications. The AQ-F255 Line Protection Device supports a large variety of communication protocols, including communication according to the IEC 61850 standard.

FUNCTION PACKAGES:

- AQ-F255B - line differential + current protection
- AQ-F255C - line differential protection + full feeder functionality
- AQ-F255D - distance protection + full feeder functionality
- AQ-F255E - distance protection + line differential protection

HIGHLIGHTS:

- Line differential protection uses Arcteq's smart dedicated process bus that transfers both standard data and up to 64 user-defined signals. It automatically synchronizes line differential protection settings from the master node to the sub-node device, and compensates for communication delays without external time synchronization.
- Innovative line segment-based distance protection function enhances resistive reach and fault location accuracy, particularly in mixed network, reducing the risk of unwanted operations.
- A large I/O capacity.
- 5-shot scheme-controlled auto-recloser.
- IEC 61850 2nd Edition.
- Optional power and energy measurement accuracy of 0.2 %

Protection

	B	C	D	E
Non-directional overcurrent protection ($I>$; 50/51)	•	•	•	•
Non-directional earth fault protection ($i0>$; 50/51N)	•	•	•	•
Directional overcurrent protection ($I_{dir}>$; 67)		•	•	•
Directional earth fault protection ($I_{0dir}>$; 67N)		•	•	•
Intermittent earth fault protection ($I_{0int}>$; 67NT)		•	•	•
Negative sequence overcurrent/ Phase current reversal/ Current unbalance protection ($I2>$; 46/46R/46L)	•	•	•	•
Harmonic overcurrent protection ($Ih>$; 50H/51H/68H)	•	•	•	•
Circuit breaker failure protection (CBFP; 50BF/52BF)	•	•	•	•
High- and low-impedance restricted earth fault/ Cable end differential protection ($I0d>$; 87N)	•	•	•	•
Voltage-restrained overcurrent protection ($Iv>$; 51V)		•	•	•
Overvoltage protection ($U>$; 59)		•	•	•
Undervoltage protection ($U<$; 27)		•	•	•
Neutral overvoltage protection ($U0>$; 59N)		•	•	•
Sequence voltage protection ($U1/U2>/<$; 47/27P/59PN)		•	•	•
Overfrequency and underfrequency protection ($f>/<$; 810/81U)		•	•	•
Rate-of-change of frequency protection ($df/dt>/<$; 81R)		•	•	•
Power protection ($P, Q, S>/<$; 32)		•	•	•

Protection

Low-voltage ride-through protection (LVRT; 27T)
 Line thermal overload protection (TF>; 49F)
 Line differential protection ($I_{dL}>$; 87L)
 Line distance protection ($Z<$; 21)
 Power swing blocking (PSB; 68)
 Out-of-step protection (OOS; 78)
 Resistance temperature detectors (RTD)
 Programmable stage (PSx>/<; 99)
 Arc fault protection ($I_{Arc}>/I_{0Arc}$; 50Arc>/50NArc)

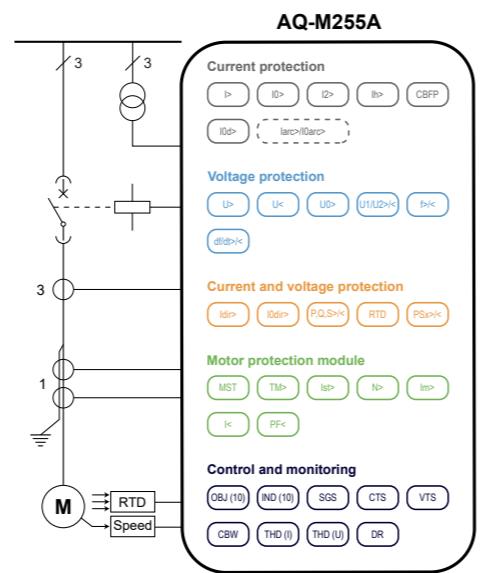
Control

Objects to control and monitor (OBJ): 10
 Indicators to monitor (IND): 10
 Setting groups (SGS): 8
 Cold load pick-up (CLPU)
 Switch-on-to-fault (SOTF)
 Auto-recloser (0 → 1; 79)
 Zero sequence recloser ($U0>$ RECL; 79N)
 Vector jump ($\Delta\phi$; 78)
 Synchrocheck ($\Delta V/\Delta\alpha/\Delta f$; 25)

Monitoring

Current transformer supervision (CTS)
 Voltage transformer supervision (VTS; 60)
 Circuit breaker wear monitoring (CBW)
 Current total harmonic distortion (THD)
 Voltage total harmonic distortion (THD)
 Fault locator (FL; 21FL)
 Disturbance records: 100 (à 5 s 3.2 kHz sampling)
 Non-volatile event records: 15,000

Measurements


Phase, sequence, and residual currents (IL1, IL2, IL3, IO1, IO2)
 Phase, sequence, and residual voltages (UL1, UL2, UL3, UL12, UL23, UL31, U0)
 Frequency (f)
 Power (P, Q, S, $\cos\phi$) and energy (E+, E-, Eq+, Eq-)
 Power and energy measurement accuracy 0.5 %
 Power and energy measurement accuracy 0.2 % (optional)

Hardware

	B	C	D	E
Standard features	Digital inputs: 3 Digital outputs: 5 Current inputs: 5 Voltage inputs: 4 Empty module slots: 11	•	•	•
Optional modules	Digital input module: 8 inputs Digital output module: 5 outputs High-speed and high-current output module: 3 outputs with integrated TCS Milliampere input module: 4 inputs + 1 output Milliampere output module: 4 outputs + 1 input RTD input module: 8 inputs Arc protection module: 4 sensor channels + 2 HSO + 1 BI External I/O modules (see the "Accessories" page)	•	•	•

Communication

	B	C	D	E
Standard inputs	1 port with RJ-45 Ethernet 100 MB (front) 1 port with RJ-45 Ethernet 100 MB (rear, COM A) 1 port with RS-485 (rear, COM 1)	•	•	•
Optional modules	2 × RJ-45 Ethernet (100 MB/s) + IRIG-B input 2 × ST Ethernet (100 MB/s) + IRIG-B input 2 × SFP Ethernet (100 MB/s) + IRIG-B input 2 × LC Ethernet (100 MB/s, PRP/HSR) RS-232 serial fiber (PP/PG/GP/GG)	•	•	•
Communication protocols	IEC 61850 (1st edition) IEC 61850 (2nd edition) IEC 60870-5-101/104 IEC 60870-5-103 Modbus/RTU and Modbus/TCP DNP3 SPA	•	•	•

AQ-M255 MOTOR PROTECTION DEVICE

READ MORE

The AQ-M255 motor protection device offers a modular protection and control solution for larger and more important motors that require a large I/O capacity. You can add up to total 11 option modules (I/O and other type of modules) into the device for extensive monitoring and control applications. You can also connect up to 16 RTD signals for thermal alarming and tripping. AQ-M255 communicates using various protocols, including the IEC 61850.

PROTECTION:

- Non-directional overcurrent (I>; 50/51)
- Non-directional earth fault (IO>; 50N/51N)
- Directional overcurrent (Idir>; 67)
- Directional earth fault (IOdir>; 67N/32N)
- Negative sequence overcurrent / Phase current reversal / Current unbalance (I2>; 46/46R/46L)
- Harmonic overcurrent (Ih>; 50H/51H/68H)
- Circuit breaker failure protection (CBFP; 50BF/52BF)
- High- and low-impedance restricted earth fault / Cable-end differential (I0d>; 87N)
- Overvoltage (U>; 59)
- Undervoltage (U<; 27)
- Neutral overvoltage (U0>; 59N)
- Sequence voltage (U1/U2>; 47/27P/59PN)
- Over- and underfrequency (f>/<; 810/81U)
- Rate-of-change of frequency (df/dt>/<; 81R)
- Power protection (P, Q, S>/<; 32)
- Resistance temperature detectors (RTD)
- Motor status monitoring (MST)
- Machine thermal overload (TM>; 49M)
- Motor start / Locked rotor monitoring (Ist>; 48/14)
- Frequent start (N>; 66)
- Non-directional undercurrent (I<; 37)
- Mechanical jam (Im>; 51M)
- Power factor protection (PF<; 55)
- Programmable stage (PSx>/<; 99)
- Arc protection (IArc>/IOArc>; 50Arc/50Narc) (optional)
- Voltage memory

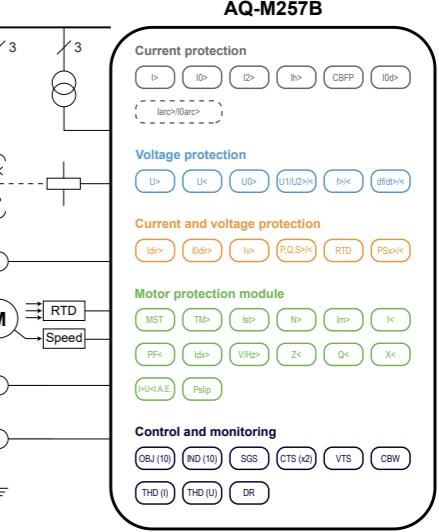
CONTROL:

- Objects to control and monitor (OBJ): 10
- Indicator objects to monitor (IND): 10
- Setting groups (SGS): 8

MONITORING:

- Current transformer supervision (CTS)
- Voltage transformer supervision (VTS; 60)
- Circuit breaker wear monitoring (CBW)
- Current total harmonic distortion (THD)
- Voltage total harmonic distortion (THD)
- Disturbance records: 100 (à 5 s 3.2 kHz sampling)
- Non-volatile event records: 15,000
- External I/O modules (see the "Accessories" page)

MEASUREMENTS:


- Phase, sequence, and residual currents (IL1, IL2, IL3, IO1, IO2)
- Phase, sequence, and residual voltages (UL1, UL2, UL3, UL12, UL23, UL31, U0)
- Frequency (f)
- Power (P, Q, S, cos φ) and energy (E+, E-, Eq+, Eq-)
- Power and energy measurement accuracy 0.5%
- Power and energy measurement accuracy 0.2 % (optional)
- Protocols:
 - IEC 61850 (1st Edition)
 - IEC 61850 (2nd Edition)
 - IEC 60870-5-101/104
 - Modbus/RTU and Modbus/TCP
 - DNP3
 - SPA

HARDWARE:

- Standard features:
 - Digital inputs: 3
 - Output relays: 5
 - Current inputs: 5
 - Voltage inputs: 4

HIGHLIGHTS:

- Powerful motor management with a large I/O capacity.
- 5 thermal models (time constant accurate).
- Soft start protection begins at 6 Hz.
- Wye-delta started motor supervision.
- Two-speed motor protection.
- Optional power and energy measurement accuracy of 0.2 %.
- Asynchronous and synchronous motors.
- Includes IEC 61850 2nd Edition.

AQ-M257 MOTOR PROTECTION DEVICE

READ MORE

The AQ-M257 offers a modular motor protection and control solution for large and important asynchronous or synchronous motors requiring differential protection. Up to 9 optional I/O or communication cards are available for extensive monitoring and control applications. Up to 16 RTD signals can be connected for thermal alarming and tripping. The AQ-M257 communicates using various protocols including IEC 61850 substation communication standard.

FUNCTION PACKAGES:

- AQ-M257A - Asynchronous motor protections
- AQ-M257B - Synchronous motor protections

PROTECTION:

- Non-directional overcurrent (I>; 50/51)
- Non-directional ground fault (IO>; 50N/51N)
- Directional overcurrent (Idir>; 67)
- Directional ground fault (IOdir>; 67N/32N)
- Negative sequence overcurrent / Phase current reversal / Current unbalance (I2>; 46/46R/46L)
- Harmonic overcurrent (Ih>; 50H/51H/68H)
- Circuit breaker failure protection (CBFP; 50BF/52BF)
- High- and low-impedance restricted ground fault / Cable-end differential (I0d>; 87N)
- Overvoltage (U>; 59)
- Undervoltage (U<; 27)
- Neutral overvoltage (U0>; 59N)
- Sequence voltage (U1/U2>; 47/27P/59PN) (AQ-M257A only)
- Over- and underfrequency (f>/<; 810/81U)
- Rate-of-change of frequency (df/dt>/<; 81R)
- Power protection (P, Q, S>/<; 32)
- Resistance temperature detectors (RTD)
- Motor status monitoring (MST)
- Machine thermal overload (TM>; 49M)
- Transformer/motor/generator differential (Idx>/<; 87T/87M/87G/87N)
- Power factor protection (PF<; 55)
- Motor start / Locked rotor monitoring (Ist>; 48/14)
- Frequent start (N>; 66)
- Non-directional undercurrent (I<; 37)
- Mechanical jam (Im>; 51M)
- Volts-per-hertz (V/Hz>; 24)
- Underimpedance (Z<; 21U) (AQ-M257B only)
- Underexcitation (Q<; 40) (AQ-M257B only)
- Underreactance (X<; 21/40) (AQ-M257B only)
- Inadvertent energizing (I>U-I.A.E.; 50/27) (AQ-M257B only)

CONTROL:

- Objects to control and monitor (OBJ): 10
- Indicator objects to monitor (IND): 10
- Setting groups (SGS): 8
- 2 x Current transformer supervision (CTS)
- Voltage transformer supervision (VTS; 60)
- Circuit breaker wear monitoring (CBW)
- Current total harmonic distortion (THD)
- Voltage total harmonic distortion (THD)
- Disturbance records: 100 (à 5 s 3.2 kHz sampling)
- Non-volatile event records: 15,000
- 2 x RJ-45 Ethernet (100 MB/s) + IRIG-B input
- 2 x ST Ethernet (100 MB/s) + IRIG-B input
- 2 x LC Ethernet (100 MB/s, PRP/HSR)
- RS-232 serial fiber (PP/PG/GP/GG)

MONITORING:

- Phase, sequence, and residual currents (IL1, IL2, IL3, IO1, IO2)
- Phase, sequence, and residual voltages (UL1, UL2, UL3, UL12, UL23, UL31, U0)
- Frequency (f)
- Power (P, Q, S, cos φ) and energy (E+, E-, Eq+, Eq-)
- Power and energy measurement accuracy 0.5 %
- Power and energy measurement accuracy 0.2 % (optional)
- Protocols:
 - IEC 61850 (1st Edition)
 - IEC 61850 (2nd Edition)
 - IEC 60870-5-101/104
 - IEC 60870-5-103
 - Modbus/RTU and Modbus/TCP
 - DNP3
 - SPA

MEASUREMENTS:

- Phase, sequence, and residual currents (IL1, IL2, IL3, IO1, IO2)
- Phase, sequence, and residual voltages (UL1, UL2, UL3, UL12, UL23, UL31, U0)
- Frequency (f)
- Power (P, Q, S, cos φ) and energy (E+, E-, Eq+, Eq-)
- Power and energy measurement accuracy 0.5 %
- Power and energy measurement accuracy 0.2 % (optional)

HARDWARE:

- Standard features:
 - Digital inputs: 3
 - Output relays: 5

HIGHLIGHTS:


- Differential protection.
- A large I/O capacity.
- 5 thermal models (time constant accurate).
- Soft-start protection beginning from 6 Hz.
- Wye-delta started motor supervision.
- 2-speed motor protection.
- Optional power and energy measurement accuracy of up to 0.2 %.
- Asynchronous and synchronous motors.

PROTECTION:

- Current inputs: 10
- Voltage inputs: 4
- Empty module slots: 9
- Optional hardware modules:
 - Digital input module: 8 inputs
 - Digital output module: 5 outputs
 - High-speed and High-current output module: 3 outputs with integrated TCS
 - Milliampere input module: 4 inputs + 1 output
 - Milliampere output module: 4 outputs + 1 input
 - Arc protection module: 4 sensor channels + 2 HSO + 1 BI
 - External I/O modules (see the "Accessories" page)

COMMUNICATION:

- Standard inputs:
 - 1 port with RJ-45 Ethernet 100 MB (front)
 - 1 port with RJ-45 Ethernet 100 MB (rear, COM A)
 - 1 port with RS-485 (rear, COM 1)
- Optional modules:
 - 2 x RJ-45 Ethernet (100 MB/s) + IRIG-B input
 - 2 x ST Ethernet (100 MB/s) + IRIG-B input
 - 2 x LC Ethernet (100 MB/s, PRP/HSR)
 - RS-232 serial fiber (PP/PG/GP/GG)
- Protocols:
 - IEC 61850 (1st Edition)
 - IEC 61850 (2nd Edition)
 - IEC 60870-5-103
 - Modbus/RTU and Modbus/TCP
 - DNP3
 - SPA

AQ-G257 GENERATOR PROTECTION DEVICE

The AQ-G257 generator protection device is well-suited for large machines that require complete generator protection and differential protection. The device has an integrated automatic voltage regulator function. You can add up to total 9 option modules (I/O and other type of modules) into the device for extensive monitoring and control applications. You can also connect up to 16 RTD signals for thermal alarming and tripping. AQ-G257 communicates using various protocols, including the IEC 61850.

FUNCTION PACKAGES:

- AQ-G257A - standard generator protections
- AQ-G257B - standard generator protections + synchronizer

PROTECTION:

- Non-directional overcurrent ($I>$; 50/51)
- Non-directional earth fault ($I0>$; 50N/51N)
- Directional overcurrent ($Idir>$; 67)
- Directional earth fault ($Idir>$; 67N/32N)
- Negative sequence overcurrent / Phase current reversal / Current unbalance ($I2>$; 46/46R/46L)
- Harmonic overcurrent ($Ih>$; 50H/51H/68H)
- Circuit breaker failure protection (CBFP; 50BF/52BF)
- Voltage-restrained overcurrent ($Iv>$; 51V)
- Overvoltage ($U>$; 59)
- Undervoltage ($U<$; 27)
- Low-voltage ride-through (LVRT; 27T)
- Neutral overvoltage ($U0>$; 59N)
- Sequence voltage ($U1/U2>$; 47/27P/59PN)
- Over- and underfrequency ($f>/<$; 810/81U)
- Rate-of-change of frequency ($df/dt>/<$; 81R)
- Power protection ($P, Q, S, \cos\phi$; <32)
- Volts-per-hertz overexcitation ($V/H>$; 24)
- Underexcitation ($Q<$; 40)
- Underimpedance ($Z<$; 21U)
- Underreactance ($X<$; 21/40)
- Resistance temperature detectors (RTD)
- Machine thermal overload ($TM>$; 49M)
- Transformer/motor/generator differential ($Idx>$; 87T/87M/87G/87N)
- Pole slip protection (78)
- Power factor protection ($PF<$; 55)
- 100 % stator earth fault ($U03rd>$; 64S)
- Programmable stage ($PSx>/<$; 99)
- Arc protection ($IArc>/IOArc>$; 50Arc/50Narc) (optional)
- Voltage memory

CONTROL:

- Objects to control and monitor (OBJ): 10
- Indicator objects to monitor (IND): 10
- Setting groups (SGS): 8
- Vector jump ($\Delta\phi$; 78)
- Synchrocheck ($\Delta V/\Delta\alpha/\Delta f$; 25)
- Synchronizer ($\Delta V/\Delta\alpha/\Delta f$; 25) (AQ-G257B only)

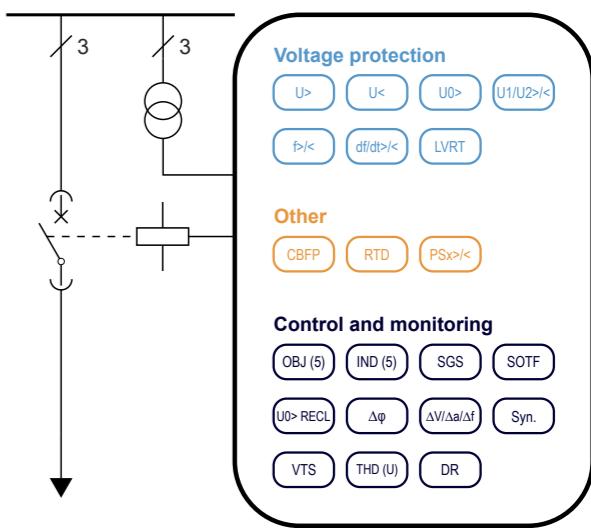
MONITORING:

- Current transformer supervision (CTS) (2 instances)
- Voltage transformer supervision (VTS; 60)
- Circuit breaker wear monitoring (CBW)
- Current total harmonic distortion (THD)
- Voltage total harmonic distortion (THD)
- Disturbance records: 100 (± 5 s 3.2 kHz sampling)
- Non-volatile event records: 15,000

MEASUREMENTS:

- Phase, sequence, and residual currents (IL1, IL2, IL3, I01, I02)
- Phase, sequence, and residual voltages (UL1, UL2, UL3, UL12, UL23, UL31, U0)
- Frequency (f)
- Power ($P, Q, S, \cos\phi$) and energy ($E+, E-, Eq+, Eq-$)
- Power and energy measurement accuracy 0.5%
- Power and energy measurement accuracy 0.2% (optional)

COMMUNICATION:


- Standard inputs:
 - 1 port with RJ-45 Ethernet 100 MB (front)
 - 1 port with RJ-45 Ethernet 100 MB (rear, COM A)
 - 1 port with RS-485 (rear, COM 1)
- Optional modules:
 - 2 x RJ-45 Ethernet (100 MB/s) + IRIG-B input
 - 2 x ST Ethernet (100 MB/s) + IRIG-B input
 - 2 x LC Ethernet (100 MB/s, PRP/HSR)
 - RS-232 serial fiber (PP/PG/GP/GG)

POWER:

- Standard features:
 - Digital inputs: 3
 - Output relays: 5
 - Current inputs: 10

HIGHLIGHTS:

- Complete synchronous machine protection.
- Integrated differential protection.
- Optional power and energy measurement accuracy of 0.2 %.
- Includes IEC 61850 2nd Edition.

AQ-V251 VOLTAGE PROTECTION DEVICE

The AQ-V251 voltage protection device offers a modular voltage protection solution for substations. The relay includes both voltage and frequency protections as well as powerful logic programming, and you can add up to total 13 option modules (I/O and other type of modules).

The V251 is suitable for demanding load shedding applications and includes synchronizer functionality as software option. AQ-V251 voltage protection device communicates using various protocols, including the IEC 61850.

HIGHLIGHTS:

- A large I/O capacity.
- 8 frequency stages and 8 setting groups for load shedding.
- Synchrocheck for up to 3 circuit breakers.
- Anti-islanding protection.
- Includes IEC 61850 2nd Edition.

FUNCTION PACKAGES:

- AQ-V251A - standard voltage protection functionality
- AQ-V251B - standard voltage protection functionality + synchronizer

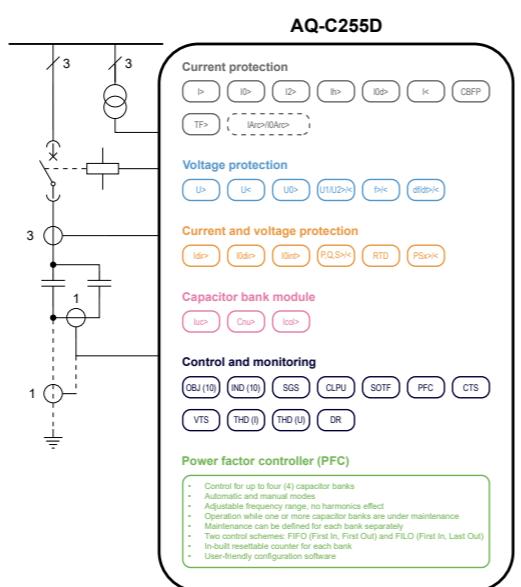
PROTECTION:

- Circuit breaker failure protection (CBFP; 50BF/52BF)
- Overvoltage ($U>$; 59)
- Undervoltage ($U<$; 27)
- Neutral overvoltage ($U0>$; 59N)
- Sequence voltage ($U1/U2>$; 47/27P/59PN)
- Over- and underfrequency ($f>/<$; 810/81U)
- Rate-of-change of frequency ($df/dt>/<$; 81R)
- Low-voltage ride-through (LVRT; 27T)
- Resistance temperature detectors (RTD)
- Programmable stage ($PSx>/<$; 99)
- Voltage memory

CONTROL:

- Objects to control and monitor (OBJ): 10
- Indicator objects to monitor (IND): 10
- Setting groups (SGS): 8
- Switch-on-to-fault (SOTF)
- Zero sequence recloser ($U0>$ RECL; 79N)
- Vector jump ($\Delta\phi$; 78)
- Synchrocheck ($\Delta V/\Delta\alpha/\Delta f$; 25)
- Synchronizer ($\Delta V/\Delta\alpha/\Delta f$; 25) (AQ-V251B only)

MONITORING:


- Voltage transformer supervision (VTS; 60)
- Voltage total harmonic distortion (THD)
- Disturbance records: 100 (± 5 s 3.2 kHz sampling)
- Non-volatile event records: 15,000

MEASUREMENTS:

- Phase, sequence, and residual voltages (UL1, UL2, UL3, UL12, UL23, UL31, U0)
- Frequency (f)

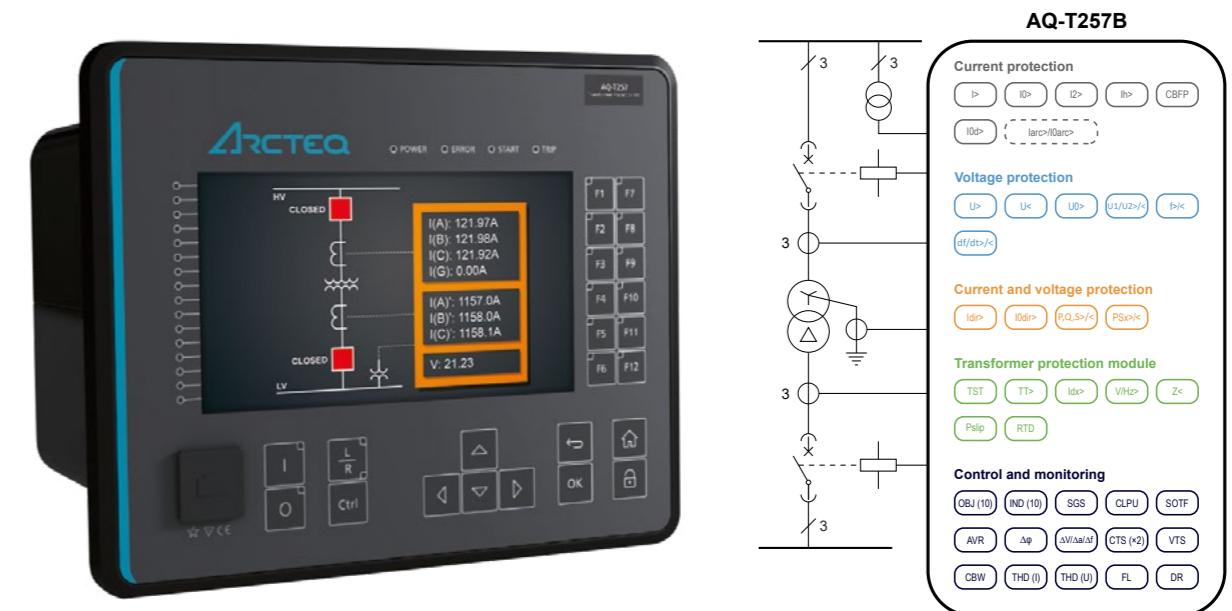
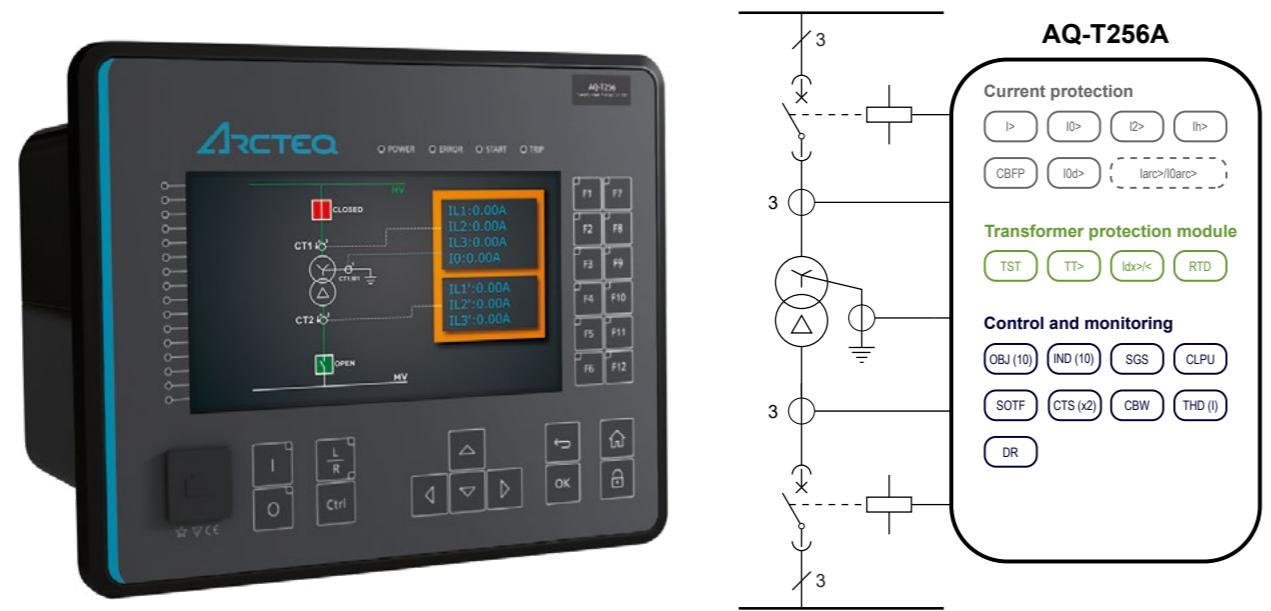
COMMUNICATION:

- Standard inputs:
 - 1 port with RJ-45 Ethernet 100 MB (front)
 - 1 port with RJ-45 Ethernet 100 MB (rear, COM A)
 - 1 port with RS-485 (rear, COM 1)
- Optional modules:
 - 2 x RJ-45 Ethernet (100 MB/s) + IRIG-B input
 - 2 x ST Ethernet (100 MB/s) + IRIG-B input
 - 2 x LC Ethernet (100 MB/s, PRP/HSR)
 - RS-232 serial fiber (PP/PG/GP/GG)
- Protocols:
 - IEC 61850 (1st Edition)
 - IEC 61850 (2nd Edition)
 - IEC 60870-5-101/104
 - IEC 60870-5-103
 - Modbus/RTU and Modbus/TCP
 - DNP3
 - SPA

AQ-C255 CAPACITOR BANK PROTECTION DEVICE

READ MORE

The AQ-C255 capacitor bank protection device has been specifically designed for the protection of capacitor banks. It includes capacitor bank current unbalance, capacitor bank neutral unbalance, and overload protections in addition to the standard overcurrent, earth fault and voltage protections. AQ-C255 offers a modular protection and control solution for applications that require a large I/O capacity. You can add up to total 11 option modules (I/O and other type of modules) into the device for extensive monitoring and control applications. The AQ-C255 capacitor bank protection device communicates using various protocols, including the IEC 61850.



FUNCTION PACKAGES:

- AQ-C255A - standard capacitor bank functionality
- AQ-C255B - PFC (up to 5 capacitor banks)
- AQ-C255C - standard voltage protections + PFC (up to 5 capacitor banks)
- AQ-C255D - standard capacitor bank functionality + PFC (up to 4 capacitor banks)

Protection

	A	B	C	D
Non-directional overcurrent ($I>$; 50/51)	•			•
Non-directional earth fault ($I_{0>}$; 50N/51N)	•		•	
Directional overcurrent ($I_{dir>}$; 67)	•		•	
Directional earth fault ($I_{0dir>}$; 67N/32N)	•		•	
Intermittent earth fault ($I_{0int>}$; 67NT)	•		•	
Negative sequence overcurrent / Phase current reversal / Current unbalance ($I_{2>}$; 46/46R/46L)	•		•	
Harmonic overcurrent ($I_{h>}$; 50H/51H/68H)	•		•	
Circuit breaker failure protection (CBFP; 50BF/52BF)	•		•	
High- and low-impedance restricted earth fault / Cable-end differential ($I_{0d>}$; 87N)	•		•	
Capacitor bank overload protection ($I_{col>}$; 490L)	•		•	
Capacitor bank neutral unbalance protection ($C_{nu>}$; 50UB)	•		•	

	A	B	C	D
Protection	•			•
Capacitor bank current unbalance protection ($I_{uc>}$; 46C)				
Non-directional undercurrent protection ($I<$; 37)	•		•	•
Overvoltage ($U>$; 59)	•		•	•
Undervoltage ($U<$; 59)	•		•	•
Neutral overvoltage ($U_{0>}$; 59N)	•		•	•
Sequence voltage ($U_1/U_2>/<$; 47/27P/59PN)	•		•	•
Over- and underfrequency ($f>/<$; 810/81U)	•		•	•
Rate-of-change of frequency ($df/dt>/<$; 81R)	•		•	•
Power protection ($P, Q, S>/<$; 32)	•		•	•
Line thermal overload ($TF>$; 49F)	•		•	•
Resistance temperature detectors (RTD)	•	•	•	•
Programmable stage ($PS_x>/<$; 99)	•	•	•	•
Voltage memory	•		•	•
Arc protection ($IArc>/IOArc>$; 50Arc/50Narc) (optional)	•			•
Control	A	B	C	D
Power factor controller (PFC)				
Objects to control and monitor (OBJ): 10	•	•	•	•
Indicator objects to monitor (IND): 10	•	•	•	•
Cold load pick-up (CLPU)	•			•
Switch-on-to-fault (SOTF)	•			•
Monitoring	A	B	C	D
Current transformer supervision (CTS)	•	•	•	•
Voltage transformer supervision (VTS; 60)	•	•	•	•
Circuit breaker wear monitoring (CBW)	•			
Current total harmonic distortion (THD)	•	•	•	•
Voltage total harmonic distortion (THD)	•	•	•	•
Disturbance records: max 100 records	•	•	•	•
Non-volatile event records: max 15,000 records	•	•	•	•
Measurements	A	B	C	D
Phase, sequence, and residual currents ($IL_1, IL_2, IL_3, IO_1, IO_2$)	•	•	•	•
Phase, sequence, and residual voltages ($UL_1, UL_2, UL_3, UL_{12}, UL_{23}, UL_{31}, UO$)	•	•	•	•
Frequency (f)				
Power ($P, Q, S, \cos \phi$) and energy (E_+, E_-, Eq_+, Eq_-)	•	•	•	•
Power and energy measurement accuracy 0.5 %	•	•	•	•
Power and energy measurement accuracy 0.2 % (optional)	•	•	•	•
Hardware	A	B	C	D
Standard features	Digital inputs: 3 Digital outputs: 5 Current inputs: 5 Voltage inputs: 4 Empty module slots: 11	• • • • •	• • • • •	• • • • •
Optional modules	Digital input module: 8 inputs Digital output module: 5 outputs High-speed and High-current output module: 3 outputs with integrated TCS Milliampere input module: 4 inputs + 1 output Milliampere output module: 4 outputs + 1 input Arc protection module: 4 sensor channels + 2 HSO + 1 BI External I/O modules (see the "Accessories" page)	• • • • • • • •	• • • • • • • •	• • • • • • • •
Communication	A	B	C	D
Comm. inputs	1 port with RJ-45 Ethernet 100 MB (front) 1 port with RJ-45 Ethernet 100 MB (rear, COM A) 1 port with RS-485 (rear, COM 1)	• • •	• • •	• • •
Optional modules	2 x RJ-45 Ethernet (100 MB/s) + IRIG-B input 2 x ST Ethernet (100 MB/s) + IRIG-B input 2 x LC Ethernet (100 MB/s, PRP/HSR) RS-232 serial fiber (PP/PG/GP/GG)	• • • •	• • • •	• • • •
Communication protocols	IEC 61850 (1st Edition) IEC 61850 (2nd Edition) IEC 60870-5-101/104 IEC 60870-5-103 Modbus/RTU and Modbus/TCP DNP3 SPA	• • • • • • •	• • • • • • •	• • • • • • •

AQ-T256 TRANSFORMER PROTECTION DEVICE

[READ MORE](#)

AQ-T256 is a transformer protection device with sophisticated and easy-to-use differential protection functions. The relay provides overcurrent protection for both low-voltage and high-voltage sides, earth fault protection, negative sequence overcurrent protection as well as two independent instances of restricted earth fault protection. You can add up to total 10 option modules (I/O and other type of modules) into the device for extensive monitoring and control applications. AQ-T256 is a transformer protection device with a sophisticated and easy-to-use differential protection function. communicates using various protocols, including the IEC 61850.

PROTECTION:

- Non-directional overcurrent (I>; 50/51)
- Non-directional earth fault (I0>; 50N/51N)
- Negative sequence overcurrent / Phase current reversal / Current unbalance (I2>; 4/6/46R/46L)
- Harmonic overcurrent (Ih>; 50H/51H/68H)
- Circuit breaker failure protection (CBFP; 50BF/52BF)
- High- and low-impedance restricted earth fault (I0d>; 87N)
- Resistance temperature detectors (RTD)
- Transformer status monitoring (TRF)
- Transformer thermal overload (TT>; 49T)
- Transformer/motor/generator differential (Idx>; 87T/87M/87G/87N)
- Programmable stage (PSx>/<; 99)
- Arc protection (IArc>/IOArc>; 50Arc/50Narc) (optional)

CONTROL:

- Objects to control and monitor (OBJ): 10
- Indicator objects to monitor (IND): 10
- Setting groups (SGS): 8
- Switch-on-to-fault (SOTF)

HIGHLIGHTS:

- A large I/O capacity.
- 2nd and 5th harmonic blocking.
- Automatic verification of connection group and nominal value settings.
- Overloading and through fault statistics for preventative maintenance.
- Includes IEC 61850 2nd Edition.

- Milliampere output module: 4 outputs + 1 input
- Arc protection module: 4 sensor channels + 2 HSO + 1 BI
- External I/O modules (see the "Accessories" page)

COMMUNICATION:

- Standard inputs:**
 - 1 port with RJ-45 Ethernet 100 MB (front)
 - 1 port with RJ-45 Ethernet 100 MB (rear, COM A)
 - 1 port with RS-485 (rear, COM 1)
- Optional modules:**
 - 2 x RJ-45 Ethernet (100 MB/s) + IRIG-B input
 - 2 x ST Ethernet (100 MB/s) + IRIG-B input
 - 2 x LC Ethernet (100 MB/s, PRP/HSR)
 - RS-232 serial fiber (PP/PG/GP/GG)
- Protocols:**
 - IEC 61850 (1st Edition)
 - IEC 61850 (2nd Edition)
 - IEC 60870-5-101/104
 - IEC 60870-5-103
 - Modbus/RTU and Modbus/TCP
 - DNP3
 - SPA

AQ-T257 TRANSFORMER PROTECTION DEVICE

[READ MORE](#)

AQ-T257 is a transformer protection device with a differential protection function and an integrated automatic voltage regulator function. The relay also provides complete current-based and voltage-based protection functions as well as full measurements.you can add up to total 9 option modules (I/O and other type of modules) into the device for extensive monitoring and control applications. AQ-T257 communicates using various protocols, including the IEC 61850.

FUNCTION PACKAGES:

- AQ-T257A - standard transformer functionality
- AQ-T257B - standard transformer functionality + AVR

HIGHLIGHTS:

- A large I/O capacity.
- Automatic/manual voltage regulation and/or parallel voltage regulation (AVR).
- Complete transformer protection functionality.
- 2nd and 5th harmonic blocking.
- Automatic verification of connection group and nominal value settings.
- Overloading and through fault statistics for preventative maintenance.
- Optional power and energy measurement accuracy of 0.2 %.
- Includes IEC 61850 2nd Edition.

PROTECTION:

- Non-directional overcurrent (I>; 50/51)
- Non-directional earth fault (I0>; 50N/51N)
- Directional overcurrent (Idir>; 67)
- Directional earth fault (Idir>; 67N/32N)
- Negative sequence overcurrent / Phase current reversal / Current unbalance (I2>; 46/46R/46L)
- Harmonic overcurrent (Ih>; 50H/51H/68H)
- Circuit breaker failure protection (CBFP; 50BF; 52BF)
- High- and low-impedance restricted earth fault (I0d>; 87N)
- Overvoltage (U>; 59)
- Undervoltage (U<; 27)
- Neutral overvoltage (U0>; 59N)
- Sequence voltage (U1/U2>; 47/27P/59PN)
- Over- and underfrequency (f<; 810/81U)
- Rate-of-change of frequency (df/dt>; 81R)
- Power protection (P,Q,S>; 32)
- Pole slip protection (78)
- Volts-per-hertz overexcitation (V/Hz>; 24)
- Resistance temperature detectors (RTD)
- Transformer status monitoring (TRF)
- Transformer thermal overload (TT>; 49T)
- Transformer/motor/generator differential (Idx>; 87T/87M/87G/87N)
- Underimpedance (Z<; 21U)
- Underreactance (X<; 21/40)
- Programmable stage (PSx>; 99)
- Arc protection (IArc>; 10Arc>; 50Arc/50Narc) (optional)
- Voltage memory

CONTROL:

- Objects to control and monitor (OBJ): 10
- Indicator objects to monitor (IND): 10
- Setting groups (SGS): 8
- Cold load pick-up (CLPU)
- Switch-on-to-fault (SOTF)
- Vector jump ($\Delta\phi$; 78)
- Automatic voltage regulator (AVR; 90) (AQ-T257B only)
- Synchrocheck ($\Delta V/\Delta\phi/\Delta f$; 25)

MONITORING:

- Current transformer supervision (CTS) (2 instances)
- Voltage transformer supervision (VTS; 60)
- Circuit breaker wear monitoring (CBW)
- Current total harmonic distortion (THD)
- Voltage total harmonic distortion (THD)
- Fault locator (21FL)
- Disturbance records: 100 (á 5 s 3.2 kHz sampling)
- Non-volatile event records: 15,000

MEASUREMENTS:

- Phase, sequence, and residual currents (IL1, IL2, IL3, IO1, IO2)
- Phase, sequence, and residual voltages (UL1, UL2, UL3, UL12, UL23, UL31, U0)
- Frequency (f)
- Power (P, Q, S, cos ϕ) and energy (E+, E-, Eq+, Eq-)
- Power and energy measurement accuracy 0.5%
- Power and energy measurement accuracy 0.2% (optional)

HARDWARE:

- Standard features:**
 - Digital inputs: 3
 - Output relays: 5
 - Current inputs: 10
 - Voltage inputs: 4
 - Empty module slots: 9
- Optional hardware modules:**
 - Digital input module: 8 inputs
 - Digital output module: 5 outputs
 - High-speed and High-current output module: 3 outputs with integrated TCS
 - Milliampere input module: 4 inputs + 1 output
 - Milliampere output module: 4 outputs + 1 input
 - Arc protection module: 4 sensor channels + 2 HSO + 1 BI
 - External I/O modules (see the "Accessories" page)

COMMUNICATION:

- Standard inputs:**
 - 1 port with RJ-45 Ethernet 100 MB (front)
 - 1 port with RJ-45 Ethernet 100 MB (rear, COM A)
 - 1 port with RS-485 (rear, COM 1)
- Optional modules:**
 - 2 x RJ-45 Ethernet (100 MB/s) + IRIG-B input
 - 2 x ST Ethernet (100 MB/s) + IRIG-B input
 - 2 x LC Ethernet (100 MB/s, PRP/HSR)
 - RS-232 serial fiber (PP/PG/GP/GG)
- Protocols:**
 - IEC 61850 (1st Edition)
 - IEC 61850 (2nd Edition)
 - IEC 60870-5-101/104
 - IEC 60870-5-103
 - Modbus/RTU and Modbus/TCP
 - DNP3
 - SPA

AQ-S254 ALARM AND INDICATION DEVICE

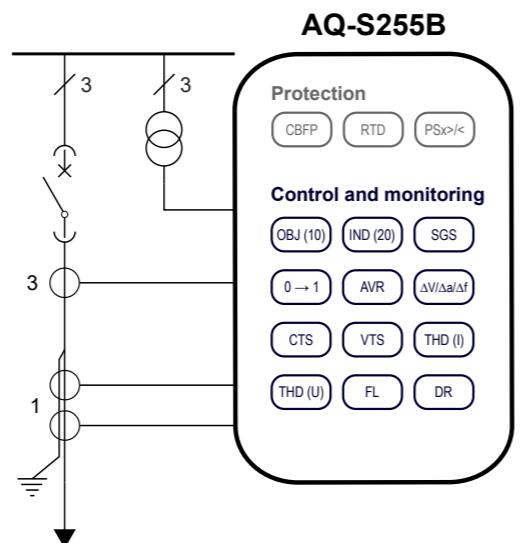
READ MORE

The AQ-S254 alarm and indication device can be applied to various substation tasks: extending the general I/O, sounding alarms, and control. you can add up to total 14 option modules (I/O and other type of modules) into the device, depending on the requirements of your application. The logic programming is powerful and easy to use. It also further expands the device's application range towards more demanding control, alarm and indication needs. The HMI is large and can be freely programmed, and provides a quick visualization of the application as well as the status of alarms and events. AQ-S254 communicates using various protocols, including the IEC 61850.

ALARM, CONTROL, AND INDICATORS:

- Resistance temperance detectors (RTD)
- Programmable stage (PSx>; 99)
- Objects to control and monitor (OBJ): 10
- Indicator objects to monitor (IND): 20
- Alarms to program: 128
- Setting groups (SGS): 8
- Disturbance records: 100 (á 5 s 3.2 kHz sampling)
- Non-volatile event records: 15,000

HARDWARE:


- Standard features:**
 - Digital inputs: 3
 - Output relays: 5
 - Empty module slots: 14
- Optional hardware modules:**
 - Digital input module: 8 inputs
 - Digital output module: 5 outputs
 - High-speed and High-current output module: 3 outputs with integrated TCS
 - Milliampere I/O module: 4 outputs + 1 input
 - Milliampere I/O module: 1 output + 4 inputs
 - External I/O modules (see the "Accessories" page)

COMMUNICATION:

- Standard inputs:**
 - 1 port with RJ-45 Ethernet 100 MB (front)
 - 1 port with RJ-45 Ethernet 100 MB (rear, COM A)
 - 1 port with RS-485 (rear, COM 1)
- Optional modules:**
 - 2 x RJ-45 Ethernet (100 MB/s) + IRIG-B input
 - 2 x ST Ethernet (100 MB/s) + IRIG-B input
 - 2 x LC Ethernet (100 MB/s, PRP/HSR)
 - RS-232 serial fiber (PP/PG/GP/GG)
- Protocols:**
 - IEC 61850 (1st Edition)
 - IEC 61850 (2nd Edition)
 - IEC 60870-5-101/104
 - IEC 60870-5-103
 - Modbus/RTU and Modbus/TCP
 - DNP3
 - SPA

HIGHLIGHTS:

- A large I/O extension with IEC 61850 and GOOSE communication.
- Control and status indication for 20 objects.
- Large, freely configurable mimic display.
- A full-color display for up to 128 alarms.
- Includes IEC 61850 2nd Edition.

AQ-S255 BAY CONTROL DEVICE

[READ MORE](#)

The AQ-S255 bay control device can be applied to demanding control applications. AQ-S255 comes with full current, voltage, power, and energy measurement capabilities. You can add up to total 11 option modules (I/O and other type of modules), depending on the requirements of your application. The logic programming is powerful and easy to use, and it further expands the device's application range towards more demanding control needs. The HMI is large and can be freely programmed, and it provides a quick visualization of the status of objects, alarms, and events. AQ-S255 communicates using various protocols, including the IEC 61850.

FUNCTION PACKAGES:

- AQ-S255A - full current, voltage, power, and energy measurement capabilities
- AQ-S255B - full current, voltage, power, and energy measurement capabilities + AVR

PROTECTION:

- Circuit breaker failure protection (CBFP; 50BF/52BF)
- Resistance temperature detectors (RTD)
- Programmable stage (PSx>/<; 99)
- Voltage memory

CONTROL:


- Objects to control and monitor (OBJ): 10
- Indicator objects to monitor (IND): 20
- Setting groups (SGS): 8
- Auto-recloser (0 → 1; 79)
- Synchrocheck ($\Delta V/\Delta a/\Delta f$; 25)
- Automatic voltage regulator (AVR; 90) (AQ-S255B only)

MONITORING:

- Current transformer supervision (CTS)
- Voltage transformer supervision (VTS; 60)
- Circuit breaker wear monitoring (CBW)
- Current total harmonic distortion (THD)
- Voltage total harmonic distortion (THD)
- Fault locator (21FL)
- Disturbance records: 100 (á 5 s 3.2 kHz sampling)
- Non-volatile event records: 15,000

HIGHLIGHTS:

- A bay control device with extensive I/O capacity.
- Synchrocheck for up to 3 circuit breakers.
- Possibility to control up to four transformer tap-changers in parallel mode with integrated voltage regulator.
- Optional power and energy measurement accuracy of 0.2 %.
- Includes IEC 61850 2nd Edition.

AQ-F201 FEEDER PROTECTION DEVICE

[READ MORE](#)

The AQ-F201 feeder protection device offers a compact solution for any application that requires non-directional overcurrent and earth fault protection. AQ-F201 has a selection of supportive functions for protection, measurement, monitoring, control, and communication as well as a large and programmable HMI. All of this guarantees the best price–performance ratio in basic protective devices.

PROTECTION:

- Non-directional overcurrent ($I>$; 50/51)
- Non-directional earth fault ($I0>$; 50N/51N)
- Negative sequence overcurrent / Phase current reversal / Current unbalance ($I2>$; 46/46R/46L)
- Harmonic overcurrent ($Ih>$; 50H/51H/68H)
- Circuit breaker failure protection (CBFP; 50BF/52BF)
- Line thermal overload (TF>; 49F)

CONTROL:

- Objects to control and monitor (OBJ): 1
- Setting groups (SGS): 8
- Cold load pick-up (CLPU)
- Switch-on-to-fault (SOTF)

MEASUREMENTS:

- Phase, sequence, and residual currents (IL1, IL2, IL3, I01, I02)
- Phase, sequence, and residual voltages (UL1, UL2, UL3, UL12, UL23, UL31, U0)
- Frequency (f)
- Power (P, Q, S, $\cos \phi$) and energy (E_+ , E_- , E_q , E_g)
- Power and energy measurement accuracy 0.5 %
- Power and energy measurement accuracy 0.2 % (optional)

- Current transformer supervision (CTS)
- Circuit breaker wear monitoring (CBW)
- Current total harmonic distortion (THD)
- Disturbance records: 100 (á 5 s 3.2 kHz sampling)
- Non-volatile event records: 15,000

HARDWARE:

- Standard features:
 - Digital inputs: 3
 - Digital outputs: 5 + 1
 - Current inputs: 5

COMMUNICATION:

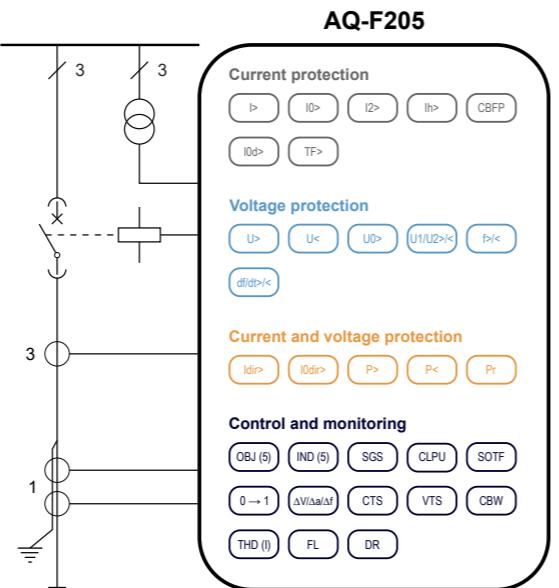
- Standard inputs:
 - 1 port with RJ-45 Ethernet 100 MB (front)
 - 1 port with RJ-45 Ethernet 100 MB (rear, COMA)
 - 1 port with RS-485 (rear, COM1)
- Protocols:
 - IEC 60870-5-101/104
 - IEC 60870-5-103
 - Modbus/RTU and Modbus/TCP
 - DNP3
 - SPA

MEASUREMENTS:

- Phase, sequence, and residual currents (IL1, IL2, IL3, I01, I02)
- Phase, sequence, and residual voltages (UL1, UL2, UL3, UL12, UL23, UL31, U0)
- Frequency (f)
- Power (P, Q, S, $\cos \phi$) and energy (E_+ , E_- , E_q , E_g)
- Power and energy measurement accuracy 0.5 %
- Power and energy measurement accuracy 0.2 % (optional)

COMMUNICATION:

- Standard inputs:
 - 1 port with RJ-45 Ethernet 100 MB (front)
 - 1 port with RJ-45 Ethernet 100 MB (rear, COM, COMA)
 - 1 port with RS-485 (rear, COM 1)

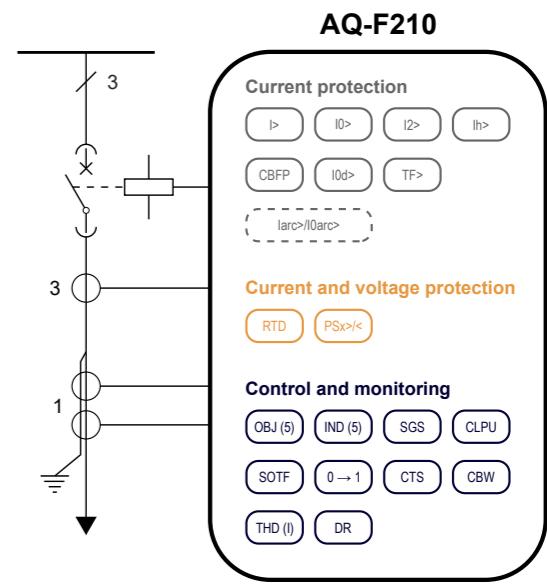

OPTIONAL MODULES:

- 2 × RJ-45 Ethernet (100 MB/s) + IRIG-B input
- 2 × ST Ethernet (100 MB/s) + IRIG-B input
- 2 × LC Ethernet (100 MB/s, PRP/HSR)
- RS-232 serial fiber (PP/PG/GP/GG)

PROTOCOLS:

- IEC 61850 (1st Edition)
- IEC 61850 (2nd Edition)
- IEC 60870-5-101/104
- IEC 60870-5-103
- Modbus/RTU and Modbus/TCP
- DNP3
- SPA

- Digital input module: 8 inputs
- Digital output module: 5 outputs
- High-speed and High-current output module: 3 outputs with integrated TCS
- Milliamperere input module: 4 inputs + 1 output


AQ-F205 FEEDER PROTECTION DEVICE

[READ MORE](#)

The AQ-F205 feeder protection device is suitable for any application that requires directional overcurrent and earth fault protections along with voltage and frequency protections. The AQ-F205 feeder protection device comes with complimentary measurement, monitoring, control, and communication features. The relay's standard configuration of 11 digital inputs and 10 digital outputs along with a large, programmable HMI allow for a variety of adaptations.

HIGHLIGHTS:

- Integrated protection, control, and measurement.
- Excellent price-performance ratio.

AQ-F210 FEEDER PROTECTION DEVICE

[READ MORE](#)

The AQ-F210 feeder protection device offers a modular feeder protection and control solution, with non-directional overcurrent and earth fault protections with an automatic recloser. You can add up to 4 I/O or communication modules into the device for more comprehensive monitoring and control applications. The AQ-F210 feeder protection device communicates using various protocols, including the IEC 61850.

HIGHLIGHTS:

- Cable-end differential protection.
- Low-impedance restricted earth fault protection.
- Harmonics protection and control (up to 31st).
- 5-shot scheme-controlled auto-recloser.

PROTECTION:

- Non-directional overcurrent (I>; 50/51)
- Non-directional earth fault (I0>; 50N/51N)
- Directional overcurrent (Idir>; 67)
- Directional earth fault (I0dir>; 67N/32N)
- Negative sequence overcurrent/ Phase current reversal/ Current unbalance (I2>; 46/46R/46L)
- Harmonic overcurrent (Ih>; 50H/51H/68H)
- Circuit breaker failure protection (CBFP; 50BF/52BF)
- High- and low-impedance restricted earth fault / Cable-end differential (I0d>; 87N)
- Overvoltage (U>; 59)
- Undervoltage (U<; 27)
- Neutral overvoltage (U0>; 59N)
- Sequence voltage (U1/U2><; 47/27P/59PN)
- Over- and underfrequency (f>/<; 810/81U)
- Rate-of-change of frequency (df/dt>/<; 81R)
- Overpower (P>; 320)
- Underpower (P<; 32U)
- Reverse power (Prev>; 32R)
- Line thermal overload (TF>; 49F)
- Voltage memory

CONTROL:

- Objects to control and monitor (OBJ): 5
- Indicator objects to monitor (IND): 5
- Setting groups (SGS): 8
- Cold load pick-up (CLPU)
- Switch-on-to-fault (SOTF)
- Auto-recloser (0 → 1; 79)
- Synchrocheck (ΔV/Δa/Δf; 25)

MONITORING:

- Current transformer supervision (CTS)
- Voltage transformer supervision (VTS; 60)
- Circuit breaker wear monitoring (CBW)
- Current total harmonic distortion (THD)
- Fault locator (21FL)
- Disturbance records: 100 (á 5 s 3.2 kHz sampling)
- Non-volatile event records: 15,000

MEASUREMENTS:

- Phase, sequence, and residual currents (IL1, IL2, IL3, I01, I02)
- Phase, sequence, and residual voltages (UL1, UL2, UL3, UL12, UL23, UL31, U0)
- Frequency (f)
- Power (P, Q, S, cos φ) and energy (E+, E-, Eq+, Eq-)

HARDWARE:

- Standard features:**
 - Digital inputs: 11
 - Digital outputs: 10 + 1
 - Current inputs: 5
 - Voltage inputs: 4

COMMUNICATION:

- Standard inputs:**
 - 1 port with RJ-45 Ethernet 100 MB (front)
 - 1 port with RJ-45 Ethernet 100 MB (rear, COM A)
 - 1 port with RS-485 (rear, COM 1)
- Protocols:**
 - IEC 60870-5-101/104
 - IEC 60870-5-103
 - Modbus/RTU and Modbus/TCP
 - DNP3
 - SPA

MONITORING:

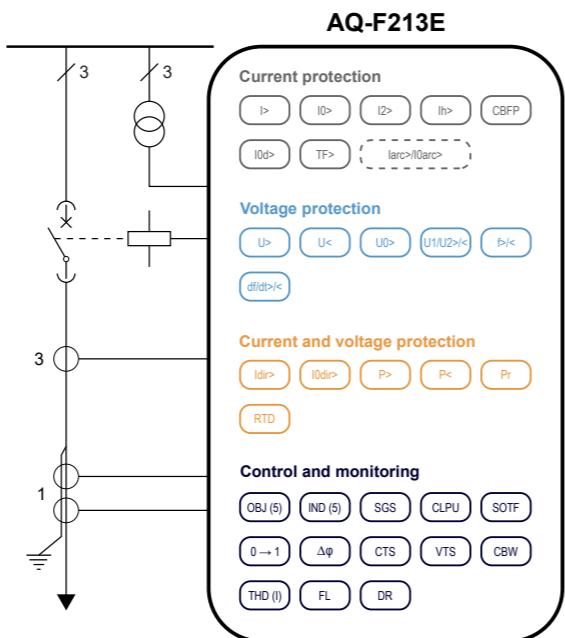
PROTECTION:

- Non-directional overcurrent (I>; 50/51)
- Non-directional earth fault (I0>; 50N/51N)
- Negative sequence overcurrent/ Phase current reversal/ Current unbalance (I2>; 46/46R/46L)
- Harmonic overcurrent (Ih>; 50H/51H/68H)
- Circuit breaker failure protection (CBFP; 50BF/52BF)
- High- and low-impedance restricted earth fault / Cable-end differential (I0d>; 87N)
- Resistance temperature detectors (RTD)
- Line thermal overload (TF>; 49F)
- Programmable stage (PSx>/<; 99)
- Arc protection (IArc>/IOArc>; 50Arc/50Narc) (optional)

CONTROL:

- Objects to control and monitor (OBJ): 5
- Indicator objects to monitor (IND): 5
- Setting groups (SGS): 8
- Cold load pick-up (CLPU)
- Switch-on-to-fault (SOTF)
- Auto-recloser (0 → 1; 79)

MONITORING:


- Current transformer supervision (CTS)
- Circuit breaker wear monitoring (CBW)
- Current total harmonic distortion (THD)
- Disturbance records: 100 (á 5 s 3.2 kHz sampling)
- Non-volatile event records: 15,000

MEASUREMENTS:

- Phase, sequence, and residual currents (IL1, IL2, IL3, I01, I02)
- Resistance temperature detectors (RTD)
- Line thermal overload (TF>; 49F)
- Programmable stage (PSx>/<; 99)

COMMUNICATION:

- Standard inputs:**
 - 1 port with RJ-45 Ethernet 100 MB/s (front)
 - 1 port with RJ-45 Ethernet 100 MB (rear, COM A)
 - 1 port with RS-485 (rear, COM 1)
- Optional modules:**
 - 2 × RJ-45 Ethernet (100 MB/s) + IRIG-B input
 - 2 × ST Ethernet (100 MB/s) + IRIG-B input
 - 2 × LC Ethernet (100 MB/s, PRP/HSR)
 - RS-232 serial fiber (PP/PG/GP/GG)
- Protocols:**
 - IEC 61850 (1st Edition)
 - IEC 60870-5-101/104
 - IEC 60870-5-103
 - Modbus/RTU and Modbus/TCP
 - DNP3
 - SPA

AQ-F213 FEEDER PROTECTION DEVICE

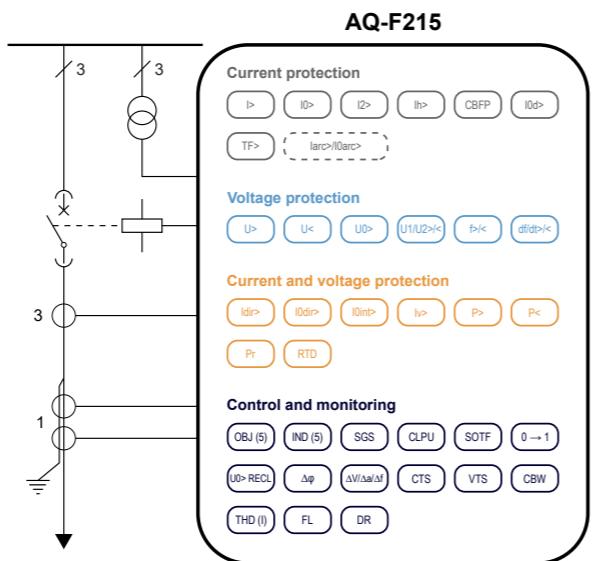
READ MORE

The AQ-F213 feeder protection device provides optimal performance for medium-voltage (main) or high-voltage (back-up) protection, control, and monitoring applications. AQ-F213 integrates protection, control, monitoring, measuring, communication, and extensive diagnostics information in one compact package. The device has a fully modular hardware construction with 3 empty I/O slots. This gives the device a high level of flexibility as you can simply plug in additional I/O or communication modules according to application needs.

The best characteristic of AQ-F213 is its modularity: you can have the basic device (AQ-F213A) in storage until you know exactly the kind of functionality its use will require. Then, you only need the necessary modules and a new script to make it into the variant required by your application!

The development of the AQ-F213 feeder protection device uses the latest available technologies, which provides protection engineers with more options and a completely new dimension

HIGHLIGHTS:


- ↗ 5 software package options for different feeder needs: modify the basic AQ-F213A with necessary modules and a new script to transform it into the device you need.
- ↗ Low-impedance restricted earth fault protection.
- ↗ Harmonics protection and control (up to 31st).
- ↗ 5-shot scheme-controlled auto-recloser.
- ↗ IEC 61850 communication protocol (1st Edition).

to protection. The device has many features which guarantee its maximum usability. These include the highly customizable graphic interface, the ability to store PDF files and other supportive documents, and extensive user log information. Additionally, the powerful configuration and setting software tools are easy to configure and free of charge.

FUNCTION PACKAGES:

- ↗ AQ-F213A - basic feeder protections
- ↗ AQ-F213B - basic feeder protections + IEC 61850 (1st Edition)
- ↗ AQ-F213C - basic feeder protections + directional earth fault protection + voltage protections + IEC 61850 (1st Edition)
- ↗ AQ-F213D - advanced feeder protection + fault locator
- ↗ AQ-F213E - full feeder functionality

	A	B	C	D	E
Protection					
Non-directional overcurrent ($I>$; 50/51)	•	•	•	•	•
Non-directional earth fault ($IO>$; 50N/51N)	•	•	•	•	•
Directional overcurrent ($Idir>$; 67)			•	•	•
Directional earth fault ($Idir>$; 67N/32N)			•	•	•
Negative sequence overcurrent / Phase current reversal / Current unbalance ($I2>$; 46/46R/46L)	•	•	•	•	•
Harmonic overcurrent ($Ih>$; 50H/51H/68H)	•	•	•	•	•
Circuit breaker failure protection (CBFP; 50BF/52BF)	•	•	•	•	•
High- and low-impedance restricted earth fault / Cable-end differential ($IOd>$; 87N)	•	•	•	•	•
Overvoltage ($U>$; 59)			•	•	•
Undervoltage ($U<$; 27)			•	•	•
Neutral overvoltage ($U0>$; 59N)			•	•	•
Sequence voltage ($U1/U2>/<$; 47/27P/59PN)					•
Over- and underfrequency ($f>/<$; 810/81U)					•
Rate-of-change of frequency ($df/dt>/<$; 81R)					•
Overpower ($P>$; 320)					•
Underpower ($P<$; 32U)					•
Reverse power ($Prev>$; 32R)					•
Line thermal overload (TF>; 49F)	•	•	•	•	•
Resistance temperature detectors (RTD)	•	•	•	•	•
Arc protection ($IArc>/IOArc>$; 50Arc/50Narc) (optional)	•	•	•	•	•
Control	A	B	C	D	E
Objects to control and monitor (OBJ): 5	•	•	•	•	•
Indicator objects to monitor (IND): 5	•	•	•	•	•
Setting groups (SGS): 8	•	•	•	•	•
Cold load pick-up (CLPU)	•	•	•	•	•
Switch-on-to-fault (SOTF)	•	•	•	•	•
Auto-recloser ($0 \rightarrow 1$; 79)	•	•	•	•	•
Vector jump ($\Delta\phi$; 78)					•
Monitoring	A	B	C	D	E
Current transformer supervision (CTS)	•	•	•	•	•
Voltage transformer supervision (VTS; 60)					•
Circuit breaker wear monitoring (CBW)	•	•	•	•	•
Current total harmonic distortion (THD)					•
Fault locator (2FL)					•
Disturbance records: 100 (à 5 s 3.2 kHz sampling)	•	•	•	•	•
Non-volatile event records: 15,000	•	•	•	•	•
Measurements	A	B	C	D	E
Phase, sequence, and residual currents ($IL1, IL2, IL3, IO1, IO2$)	•	•	•	•	•
Phase, sequence, and residual voltages ($UL1, UL2, UL3, UL12, UL23, UL31, U0$)			•	•	•
Frequency (f)	•	•	•	•	•
Power ($P, Q, S, \cos\phi$) and energy ($E+, E-, Eq+, Eq-$)			•	•	•
Hardware	A	B	C	D	E
Standard features	Digital inputs: 6 Digital outputs: 5 Current inputs: 5 Voltage inputs: 3 Empty module slots: 3	•	•	•	•
Optional modules	Digital input module: 8 inputs Digital output module: 5 outputs Milliampere output module: 4 outputs + 1 input RTD input module: 8 inputs Arc protection module: 4 sensor channels + 2 HSO + 1 BI External I/O modules (see the "Accessories" page)	•	•	•	•
Communication	A	B	C	D	E
Comm. inputs	1 port with RJ-45 Ethernet 100 MB (front) 1 port with RJ-45 Ethernet 100 MB (rear, COM A) 1 port with RS-485 (rear, COM 1)	•	•	•	•
Optional modules	2 x RJ-45 Ethernet (100 MB/s) + IRIG-B input 2 x ST Ethernet (100 MB/s) + IRIG-B input 2 x LC Ethernet (100 MB/s, PRP/HSR) RS-232 serial fiber (PP/PG/GP/GG)	•	•	•	•
Communication protocols	IEC 61850 (1st Edition) IEC 60870-5-101/104 IEC 60870-5-103 Modbus/RTU and Modbus/TCP DNP3 SPA	•	•	•	•

AQ-F215 FEEDER PROTECTION DEVICE

The AQ-F215 feeder protection device offers a modular feeder protection and control solution for applications that require both current-based and voltage-based protections as well as complete measurements. You can add up to 3 I/O or communication modules into the device for more comprehensive monitoring and control applications. The AQ-F215 feeder protection device communicates using various protocols, including the IEC 61850.

PROTECTION:

- Non-directional overcurrent (I>; 50/51)
- Non-directional earth fault (I0>; 50N/51N)
- Directional overcurrent (Idir>; 67)
- Directional earth fault (Idir>; 67N/32N)
- Intermittent earth fault (I0int>; 67NT)
- Negative sequence overcurrent / Phase current reversal / Current unbalance (I2>; 46/46R/46L)
- Harmonic overcurrent (Ih>; 50H/51H/68H)
- Circuit breaker failure protection (CBFP; 50BF/52BF)
- High- and low-impedance restricted earth fault / Cable-end differential (I0d>; 87N)
- Voltage-restrained overcurrent (Iv>; 51V)
- Overvoltage (U>; 59)
- Undervoltage (U<; 27)
- Neutral overvoltage (U0>; 59N)
- Sequence voltage (U1/U2>; 47/27P/59P)
- Over- and underfrequency (f>; 810/81U)
- Rate-of-change of frequency (df/dt>; 81R)
- Overpower (P>; 320)
- Underpower (P<; 32U)
- Reverse power (Prev>; 32R)
- Line thermal overload (TF>; 49F)
- Resistance temperature detectors (RTD)
- Programmable stage (PSx>; 99)
- Arc protection (IArc>; 10Arc>; 50Arc/50Narc) (optional)
- Voltage memory

CONTROL:

- Objects to control and monitor (OBJ): 5
- Indicator objects to monitor (IND): 5
- Setting groups (SGS): 8
- Cold load pick-up (CLPU)
- Switch-on-to-fault (SOTF)
- Auto-recloser (0 → 1; 79)
- Zero sequence recloser (U0> RECL; 79N)
- Vector jump (Δp; 78)
- Synchrocheck (ΔV/Δd/Δf; 25)

MONITORING:

- Current transformer supervision (CTS)
- Voltage transformer supervision (VTS; 60)
- Circuit breaker wear monitoring (CBW)
- Current total harmonic distortion (THD)
- Fault locator (21FL)
- Disturbance records: 100 (à 5 s 3.2 kHz sampling)
- Non-volatile event records: 15,000

MEASUREMENTS:

- Phase, sequence, and residual currents (IL1, IL2, IL3, IO1, IO2)
- Phase, sequence, and residual voltages (UL1, UL2, UL3, UL12, UL12, UL23, UL31, U0)
- Frequency (f)
- Power (P, Q, S, cos φ) and energy (E+, E-, Eq+, Eq-)
- Power and energy measurement accuracy 0.5%
- Power and energy measurement accuracy 0.2% (optional)

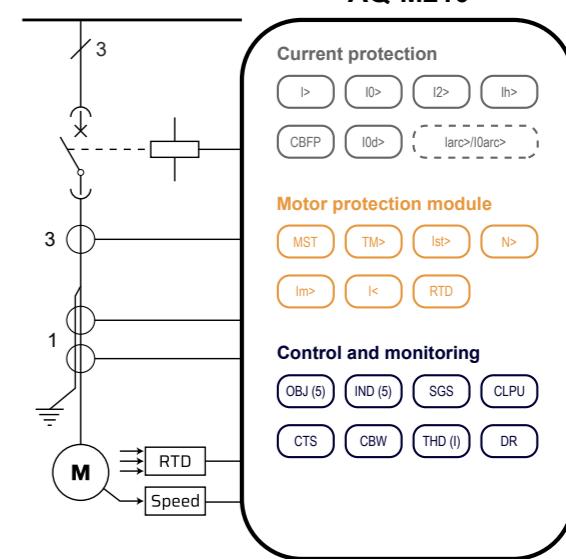
HARDWARE:

- Standard features:**
 - Digital inputs: 3
 - Output relays: 5
 - Current inputs: 5
 - Voltage inputs: 4
 - Empty module slots: 3
- Optional hardware modules:**
 - Digital input module: 8 inputs
 - Digital output module: 5 outputs
 - Milliampere output module: 4 outputs + 1 input
 - Arc protection module: 4 sensor channels + 2 HSO + 1 BI
 - External I/O modules (see the "Accessories" page)

COMMUNICATION:

- Standard inputs:**
 - 1 port with RJ-45 Ethernet 100 MB (front)
 - 1 port with RJ-45 Ethernet 100 MB (rear, COM A)
 - 1 port with RS-485 (rear, COM 1)
- Optional modules:**
 - 2 × RJ-45 Ethernet (100 MB/s) + IRIG-B input
 - 2 × ST Ethernet (100 MB/s) + IRIG-B input
 - 2 × LC Ethernet (100 MB/s, PRP/HSR)
 - RS-232 serial fiber (PP/PG/GP/GG)
- Protocols:**
 - IEC 61850 (1st Edition)
 - IEC 60870-5-101/104
 - IEC 60870-5-103
 - Modbus/RTU and Modbus/TCP
 - DNP3
 - SPA

AQ-M210 MOTOR PROTECTION DEVICE


The AQ-M210 motor protection device offers a modular protection and control solution for small and medium-sized motors. You can add up to 4 I/O or communication modules into the device for more comprehensive monitoring and control applications. You can also connect up to 12 RTD signals for thermal alarming and tripping. AQ-M210 communicates using various protocols, including the IEC 61850.

PROTECTION:

- Non-directional overcurrent (I>; 50/51)
- Non-directional earth fault (I0>; 50N/51N)
- Negative sequence overcurrent / Phase current reversal / Current unbalance (I2>; 46/46R/46L)
- Harmonic overcurrent (Ih>; 50H/51H/68H)
- Circuit breaker failure protection (CBFP; 50BF/52BF)
- High- and low-impedance restricted earth fault / Cable-end differential (I0d>; 87N)
- Resistance temperature detectors (RTD)
- Motor status monitoring (MST)
- Machine thermal overload (TM>; 49M)
- Motor start / Locked rotor monitoring (Ist>; 48/14)
- Frequent start (N>; 66)
- Non-directional undercurrent (I<; 37)
- Mechanical jam (Im>; 51M)
- Resistance temperature detectors (RTD)
- Programmable stage (PSx>; 99)
- Arc protection (IArc>; 10Arc>; 50Arc/50Narc) (optional)

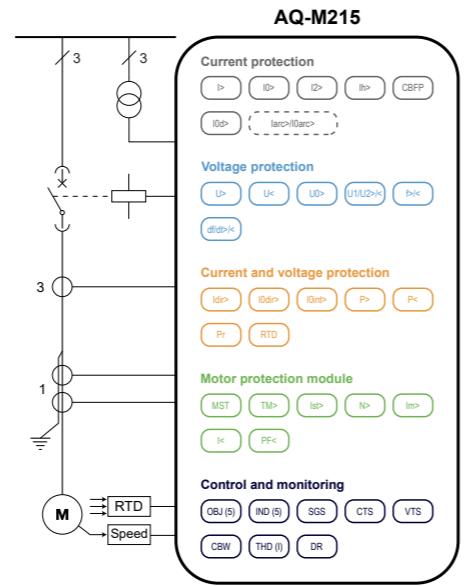
CONTROL:

- Objects to control and monitor (OBJ): 5
- Indicator objects to monitor (IND): 5
- Setting groups (SGS): 8
- Cold load pick-up (CLPU)

MONITORING:

- Current transformer supervision (CTS)
- Circuit breaker wear monitoring (CBW)
- Current total harmonic distortion (THD)
- Disturbance records: 100 (à 5 s 3.2 kHz sampling)
- Non-volatile event records: 15,000

MEASUREMENTS:


- Phase, sequence, and residual currents (IL1, IL2, IL3, IO1, IO2)
- Phase, sequence, and residual voltages (UL1, UL2, UL3, UL12, UL12, UL23, UL31, U0)
- Frequency (f)

HARDWARE:

- Standard features:**
 - Digital inputs: 3
 - Output relays: 5
 - Current inputs: 5
 - Empty module slots: 4
- Optional hardware modules:**
 - Digital input module: 8 inputs
 - Digital output module: 5 outputs
 - Milliampere output module: 4 outputs + 1 input
 - RTD input module: 8 inputs
 - Arc protection module: 4 sensor channels + 2 HSO + 1 BI
 - External I/O modules (see the "Accessories" page)

COMMUNICATION:

- Standard inputs:**
 - 1 port with RJ-45 Ethernet 100 MB (front)
 - 1 port with RJ-45 Ethernet 100 MB (rear, COM A)
 - 1 port with RS-485 (rear, COM 1)
- Optional modules:**
 - 2 × RJ-45 Ethernet (100 MB/s) + IRIG-B input
 - 2 × ST Ethernet (100 MB/s) + IRIG-B input
 - 2 × LC Ethernet (100 MB/s, PRP/HSR)
 - RS-232 serial fiber (PP/PG/GP/GG)
- Protocols:**
 - IEC 61850 (1st Edition)
 - IEC 60870-5-101/104
 - IEC 60870-5-103
 - Modbus/RTU and Modbus/TCP
 - DNP3
 - SPA

AQ-M215 MOTOR PROTECTION DEVICE

The AQ-M215 motor protection device offers a modular protection and control solution for larger and more important motors that require both current-based and voltage-based protection functions along with complete measurements. You can add up to 3 I/O or communication modules into the device for more comprehensive monitoring and control applications. You can also connect up to 16 RTD signals for thermal alarming and tripping. AQ-M215 communicates using various protocols, including the IEC 61850.

PROTECTION:

- Non-directional overcurrent (I>; 50/51)
- Non-directional earth fault (I0>; 50N/51N)
- Directional overcurrent (Idir>; 67)
- Directional earth fault (Idir>; 67N/32N)
- Intermittent earth fault (Ioint>; 67NT)
- Negative sequence overcurrent / Phase current reversal / Current unbalance (I2>; 46/46R/46L)
- Harmonic overcurrent (Ih>; 50H/51H/68H)
- Circuit breaker failure protection (CBFP; 50BF/52BF)
- High- and low-impedance restricted earth fault / Cable-end differential (I0d>; 87N)
- Overvoltage (U>; 59)
- Undervoltage (U<; 27)
- Neutral overvoltage (U0>; 59N)
- Sequence voltage (U1/U2>; 47/27P/59PN)
- Over- and underfrequency (f>/<; 810/81U)
- Rate-of-change of frequency (df/dt>/<; 81R)
- Overpower (P>; 320)
- Underpower (P<; 32U)
- Reverse power (Prev>; 32R)
- Resistance temperature detectors (RTD)
- Motor status monitoring (MST)
- Machine thermal overload (TM>; 49M)
- Motor start / Locked rotor monitoring (Is>; 48/14)
- Frequent start (N>; 66)
- Non-directional undercurrent (I<; 37)
- Mechanical jam (Im>; 51M)
- Power factor (PF<; 55)
- Programmable stage (PSx>/<; 99)
- Arc protection (IArc>/IOArc>; 50Arc/50Narc) (optional)
- Voltage memory

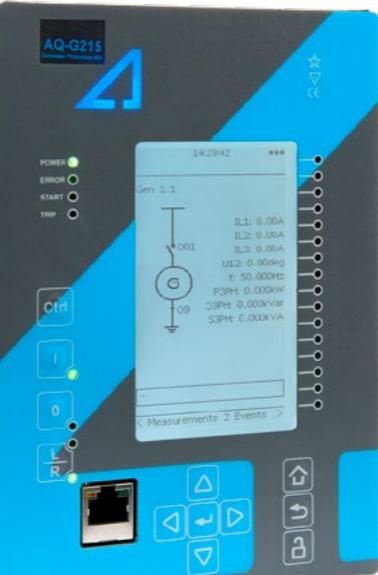
CONTROL:

- Objects to control and monitor (OBJ): 5
- Indicator objects to monitor (IND): 5
- Setting groups (SGS): 8

MONITORING:

- Current transformer supervision (CTS)
- Voltage transformer supervision (VTS: 60)
- Circuit breaker wear monitoring (CBW)
- Current total harmonic distortion (THD)
- Disturbance records: 100 (à 5 s 3.2 kHz sampling)
- Non-volatile event records: 15,000

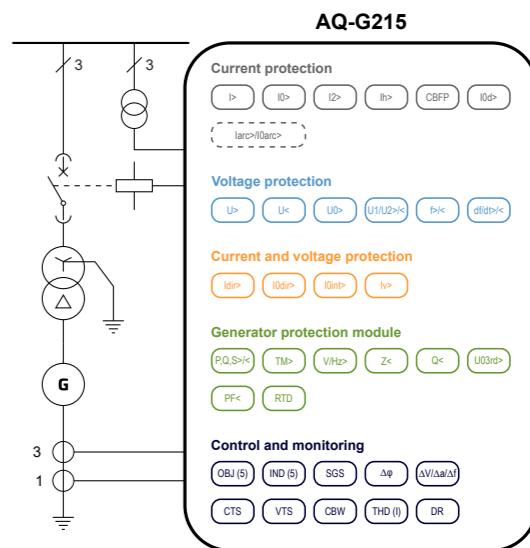
MEASUREMENTS:


- Phase, sequence, and residual currents (IL1, IL2, IL3, I01, I02)
- Phase, sequence, and residual voltages (UL1, UL2, UL3, UL12, UL23, UL31, U0)
- Frequency (f)
- Power (P, Q, S, cos φ) and energy (E+, E-, Eq+, Eq-)
- Power and energy measurement accuracy 0.5%
- Power and energy measurement accuracy 0.2% (optional)

HARDWARE:

- Standard features:**
 - Digital inputs: 3
 - Output relays: 5
 - Current inputs: 5
 - Voltage inputs: 4
 - Empty module slots: 3
- Optional hardware modules:**
 - Digital input module: 8 inputs
 - Digital output module: 5 outputs
 - Milliampere output module: 4 outputs + 1 input
 - Arc protection module: 4 sensor channels + 2 HSO + 1 BI
 - External I/O modules (see the "Accessories" page)

COMMUNICATION:


- Standard inputs:**
 - 1 port with RJ-45 Ethernet 100 MB (front)
 - 1 port with RJ-45 Ethernet 100 MB (rear, COM A)
 - 1 port with RS-485 (rear, COM 1)
- Optional modules:**
 - 2 x RJ-45 Ethernet (100 MB/s) + IRIG-B input
 - 2 x ST Ethernet (100 MB/s) + IRIG-B input
 - 2 x LC Ethernet (100 MB/s, PRP/HSR)
 - RS-232 serial fiber (PP/PG/GP/GG)
- Protocols:**
 - IEC 61850 (1st Edition)
 - IEC 60870-5-101/104
 - IEC 60870-5-103
 - Modbus/RTU and Modbus/TCP
 - DNP3
 - SPA

AQ-G215 GENERATOR PROTECTION DEVICE

The AQ-G215 generator protection device is well-suited for machines that require complete generator protections. AQ-G215 can be complemented with AQ-T216 for generator differential protection and greater protection redundancy. AQ-G215 communicates using various protocols, including the IEC 61850.

HIGHLIGHTS:

- Cost-efficient synchronous machine protection.
- Full generator protection functionality
- Optional power and energy measurement 0.2 %.

PROTECTION:

- Non-directional overcurrent (I>; 50/51)
- Non-directional earth fault (I0>; 50N/51N)
- Directional overcurrent (Idir>; 67)
- Directional earth fault (Idir>; 67N/32N)
- Negative sequence overcurrent / Phase current reversal / Current unbalance (I2>; 46/46R/46L)
- Harmonic overcurrent (Ih>; 50H/51H/68H)
- Circuit breaker failure protection (CBFP; 50BF/52BF)
- High- and low-impedance restricted earth fault / Cable-end differential (I0d>; 87N)
- Neutral overvoltage (U0>; 59N)
- Sequence voltage (U1/U2>/<; 47/27P/59PN)
- Over- and underfrequency (f>/<; 810/81U)
- Rate-of-change of frequency (df/dt>/<; 81R)
- Overvoltage (U>; 59)
- Undervoltage (U<; 27)
- Underfrequency (f<; 27)
- Neutral undervoltage (U0<; 27)
- Underimpedance (Z<; 21U)
- Neutral overvoltage (U0>; 59N)
- Sequence voltage (U1/U2>/<; 47/27P/59PN)
- Over- and underfrequency (f>/<; 810/81U)
- Rate-of-change of frequency (df/dt>/<; 81R)
- Power protection (P, Q, S>/<; 32)
- Volts-per-hertz overexcitation (V/Hz>; 24)
- Underexcitation (Q<; 40)
- Underimpedance (Z<; 21U)
- Resistance temperature detectors (RTD)
- Machine thermal overload (TM>; 49M)
- Power factor (PF<; 55)
- 100 % stator earth fault (U03rd>; 64S)
- Programmable stage (PSx>/<; 99)
- Arc protection (IArc>/IOArc>; 50Arc/50Narc) (optional)
- Voltage memory

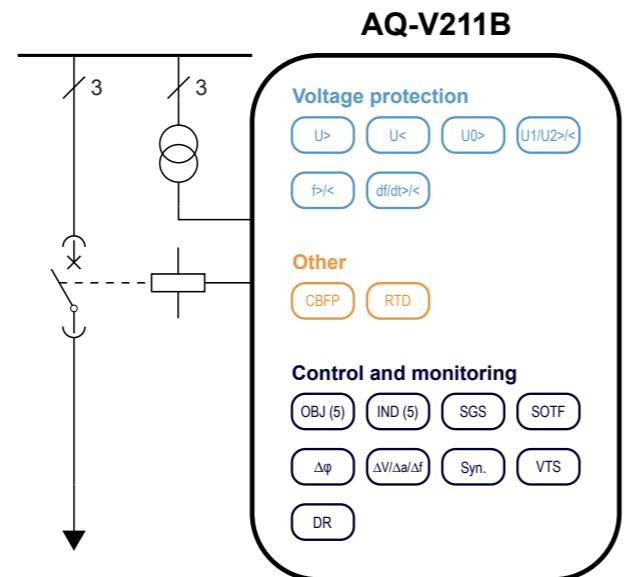
CONTROL:

- Objects to control and monitor (OBJ): 5
- Indicator objects to monitor (IND): 5
- Setting groups (SGS): 8
- Vector jump (Δφ; 78)
- Synchrocheck (ΔV/Δa/Δf; 25)

MONITORING:

- Current transformer supervision (CTS)
- Voltage transformer supervision (VTS: 60)
- Circuit breaker wear monitoring (CBW)
- Current total harmonic distortion (THD)
- Disturbance records: 100 (à 5 s 3.2 kHz sampling)
- Non-volatile event records: 15,000

MEASUREMENTS:


- Phase, sequence, and residual currents (IL1, IL2, IL3, I01, I02)
- Phase, sequence, and residual voltages (UL1, UL2, UL3, UL12, UL23, UL31, U0)
- Frequency (f)
- Power (P, Q, S, cos φ) and energy (E+, E-, Eq+, Eq-)
- Power and energy measurement accuracy 0.5%
- Power and energy measurement accuracy 0.2% (optional)

HARDWARE:

- Standard features:**
 - Digital inputs: 3
 - Output relays: 5
 - Current inputs: 5
 - Voltage inputs: 4
 - Empty module slots: 3
- Optional hardware modules:**
 - Digital input module: 8 inputs
 - Digital output module: 5 outputs
 - Milliampere output module: 4 outputs + 1 input
 - Arc protection module: 4 sensor channels + 2 HSO + 1 BI
 - External I/O modules (see the "Accessories" page)

COMMUNICATION:

- Standard inputs:**
 - 1 port with RJ-45 Ethernet 100 MB (front)
 - 1 port with RJ-45 Ethernet 100 MB (rear, COM A)
 - 1 port with RS-485 (rear, COM 1)
- Optional modules:**
 - 2 x RJ-45 Ethernet (100 MB/s) + IRIG-B input
 - 2 x ST Ethernet (100 MB/s) + IRIG-B input
 - 2 x LC Ethernet (100 MB/s, PRP/HSR)
 - RS-232 serial fiber (PP/PG/GP/GG)
- Protocols:**
 - IEC 61850 (1st Edition)
 - IEC 60870-5-101/104
 - IEC 60870-5-103
 - Modbus/RTU and Modbus/TCP
 - DNP3
 - SPA

AQ-V211 VOLTAGE PROTECTION DEVICE

READ MORE

The AQ-V211 voltage protection device offers a modular voltage protection solution for substations. The relay includes both voltage and frequency protections as well as powerful logic programming, and you can add up to 5 I/O or communication modules. All this makes AQ-V211x optimal for demanding load shedding and automatic transfer applications. AQ-V211 communicates using various protocols, including the IEC 61850.

FUNCTION PACKAGES:

- AQ-V211A - standard voltage protections
- AQ-V211B - standard voltage protections + synchronizer

PROTECTION:

- Circuit breaker failure protection (CBFP; 50BF/52BF)
- Overvoltage (U_>; 59)
- Undervoltage (U_<; 27)
- Neutral overvoltage (U₀>; 59N)
- Sequence voltage (U₁/U₂>/<; 47/27P/59PN)
- Over- and underfrequency (f_>/<; 810/81U)
- Rate-of-change of frequency (df/dt>/<; 81R)
- Resistance temperature detectors (RTD)
- Programmable stage (PSx>/<; 99)
- Voltage memory

CONTROL:

- Objects to control and monitor (OBJ): 5
- Indicator objects to monitor (IND): 5
- Setting groups (SGS): 8
- Switch-on-to-fault (SOTF)
- Vector jump ($\Delta\phi$; 78)
- Synchrocheck ($\Delta V/\Delta\phi/\Delta f$; 25)
- Synchronizer ($\Delta V/\Delta\phi/\Delta f$; 25) (AQ-V211B only)

MONITORING:

- Voltage transformer supervision (VTS; 60)
- Disturbance records: 100 (à 5 s 3.2 kHz sampling)
- Non-volatile event records: 15,000

MEASUREMENTS:

- Phase, sequence, and residual voltages (UL1, UL2, UL3, UL12, UL23, UL31, U0)
- Frequency (f)

HARDWARE:

- **Standard features:**
 - Digital inputs: 3
 - Output relays: 5
 - Voltage inputs: 4
 - Empty module slots: 5
- **Optional hardware modules:**
 - Digital input module: 8 inputs
 - Digital output module: 5 outputs
 - Milliampere output module: 4 outputs + 1 input
 - Arc protection module: 4 sensor channels + 2 HSO + 1 BI
 - External I/O modules (see the "Accessories" page)

COMMUNICATION:

- **Standard inputs:**
 - 1 port with RJ-45 Ethernet 100 MB (front)
 - 1 port with RJ-45 Ethernet 100 MB (rear, COM A)
 - 1 port with RS-485 (rear, COM 1)
- **Optional modules:**
 - 2 x RJ-45 Ethernet (100 MB/s) + IRIG-B input
 - 2 x ST Ethernet (100 MB/s) + IRIG-B input
 - 2 x LC Ethernet (100 MB/s, PRP/HSR)
 - RS-232 serial fiber (PP/PG/GP/GG)
- **Protocols:**
 - IEC 61850 (1st Edition)
 - IEC 60870-5-101/104
 - IEC 60870-5-103
 - Modbus/RTU and Modbus/TCP
 - DNP3
 - SPA

AQ-C215 CAPACITOR BANK PROTECTION DEVICE

READ MORE

The AQ-C215 capacitor bank protection device has been specifically designed for the protection of capacitor banks. It includes capacitor bank current unbalance and overload protection in addition to standard overcurrent, earth fault and voltage protections. You can add up to 3 optional I/O or communication modules into the device for more comprehensive monitoring and control applications. AQ-C215 capacitor bank protection device communicates using various protocols, including the IEC 61850.

FUNCTION PACKAGES:

- Overcurrent, earth fault, and voltage protections.
- Capacitor bank current unbalance protection with natural unbalance compensation.
- Capacitor bank overload protection.
- Harmonic overcurrent protection (up to 31st).
- Current, voltage, energy, and power measurements.
- Up to 100 disturbance records.

PROTECTION:

- Non-directional overcurrent (I_>; 50/51)
- Non-directional earth fault (I_{>0}; 50N/51N)
- Negative sequence overcurrent / Phase current reversal / Current unbalance (I₂>; 46/46R/46L)
- Harmonic overcurrent (I_{h>}; 50H/51H/68H)
- Circuit breaker failure protection (CBFP; 50BF/52BF)
- Capacitor bank current unbalance (I_{uc}>; 46C)
- Capacitor bank neutral unbalance (Cnu>; 50UB)
- Capacitor bank overload (I_{col>}; 490L)
- Non-directional undercurrent (I_<; 37)
- Overvoltage (U_>; 59)
- Undervoltage (U_<; 27)
- Neutral overvoltage (U₀>; 59N)
- Sequence voltage (U₁/U₂>/<; 47/27P/59PN)
- Resistance temperature detectors (RTD)
- Line thermal overload (TF>; 49F)
- Programmable stage (PSx>/<; 99)
- Arc protection (I_{Arc>}/I_{0Arc>}; 50Arc/50Narc) (optional)
- Voltage memory

CONTROL:

- Objects to control and monitor (OBJ): 5
- Setting groups (SGS): 8
- Switch-on-to-fault (SOTF)

MONITORING:

- Current transformer supervision (CTS)
- Voltage transformer supervision (VTS; 60)
- Current total harmonic distortion (THD)
- Disturbance records: 100 (à 5 s 3.2 kHz sampling)
- Non-volatile event records: 15,000

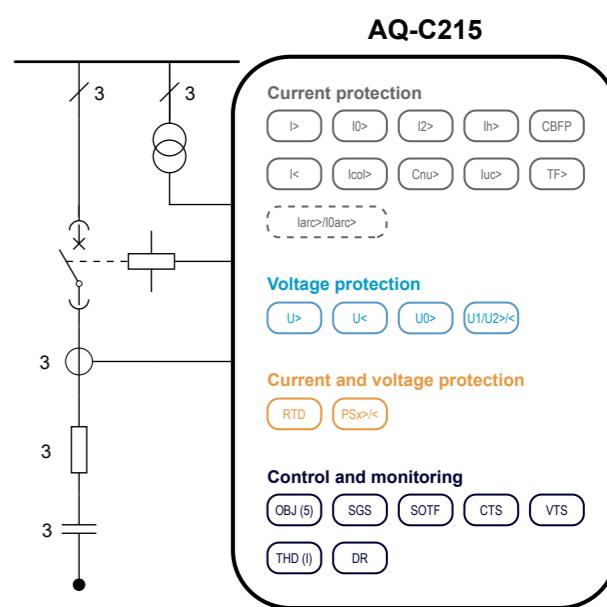
MEASUREMENTS:

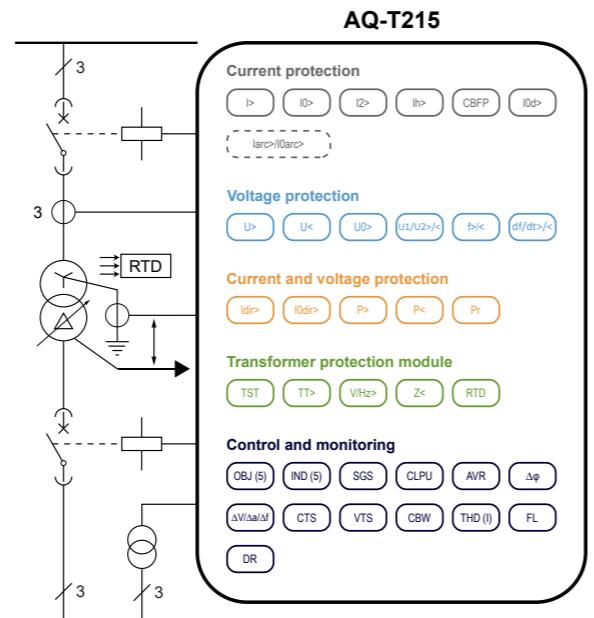
- Phase, sequence, and residual currents (IL1, IL2, IL3, IL10, IL02)
- Phase, sequence, and residual voltages (UL1, UL2, UL3, UL12, UL23, UL31, U0)
- Frequency (f)
- Power (P, Q, S, cos φ) and energy (E₊, E₋, Eq₊, Eq₋)
- Power and energy measurement accuracy 0.5 %
- Power and energy measurement accuracy 0.2 % (optional)

HARDWARE:

- **Standard features:**
 - Digital inputs: 3
 - Output relays: 5
 - Current inputs: 5
 - Voltage inputs: 4
 - Empty module slots: 3

OPTIONAL HARDWARE MODULES:


- Digital input module: 8 inputs
- Digital output module: 5 outputs
- Milliampere output module: 4 outputs + 1 input
- Arc protection module: 4 sensor channels + 2 HSO + 1 BI
- External I/O modules (see the "Accessories" page)


COMMUNICATION:

- **Standard inputs:**
 - 1 port with RJ-45 Ethernet 100 MB (front)
 - 1 port with RJ-45 Ethernet 100 MB (rear, COM A)
 - 1 port with RS-485 (rear, COM 1)
- **Optional modules:**
 - 2 x RJ-45 Ethernet (100 MB/s) + IRIG-B input
 - 2 x ST Ethernet (100 MB/s) + IRIG-B input
 - 2 x LC Ethernet (100 MB/s, PRP/HSR)
 - RS-232 serial fiber (PP/PG/GP/GG)

PROTOCOLS:

- IEC 61850 (1st Edition)
- IEC 60870-5-101/104
- IEC 60870-5-103
- Modbus/RTU and Modbus/TCP
- DNP3
- SPA

AQ-T215 TRANSFORMER PROTECTION DEVICE

AQ-T215 is a voltage regulating device. It comes with current-based and voltage-based protection functions, which makes the relay suitable for combined transformer voltage regulation and back-up protection. The transformer monitoring module is included as a standard feature, and it provides statistical information for preventive maintenance purposes. AQ-T215 communicates using various protocols, including the IEC 61850.

PROTECTION:

- Non-directional overcurrent (I>; 50/51)
- Non-directional earth fault (I0>; 50N/51N)
- Directional overcurrent (Idr>; 67)
- Directional earth fault (Idr>; 67N/32N)
- Negative sequence overcurrent / Phase current reversal / Current unbalance (I2>; 46/46R/46L)
- Harmonic overcurrent (Ih>; 50H/51H/68H)
- Circuit breaker failure protection (CBFP; 50BF/52BF)
- High- and low-impedance restricted earth fault / Cable-end differential (Idr>; 87N)
- Overvoltage (U>; 59)
- Undervoltage (U<; 27)
- Neutral overvoltage (U0>; 59N)
- Sequence voltage (U1/U2>/<; 47/27P/59PN)
- Over- and underfrequency (f>/<; 810/81U)
- Rate-of-change of frequency (df/dt>/<; 81R)
- Overpower (P>; 320)
- Underpower (P<; 32U)
- Reverse power (Prev>; 32R)
- Volts-per-hertz overexcitation (V/Hz>; 24)
- Underimpedance (Z<; 21U)
- Resistance temperature detectors (RTD)
- Transformer status monitoring (TRF)
- Transformer thermal overload (TT>; 49T)
- Programmable stage (PSx>/<; 99)
- Arc protection (IArc>/10Arc>; 50Arc/50Narc) (optional)
- Voltage memory

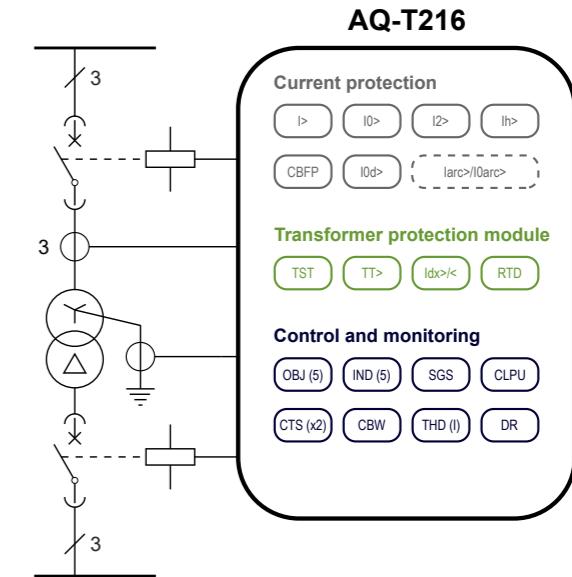
CONTROL:

- Objects to control and monitor (OBJ): 5
- Indicator objects to monitor (IND): 5
- Setting groups (SGS): 8
- Cold load pick-up (CLPU)
- Automatic voltage regulator (AVR; 90)
- Vector jump (Δφ; 78)
- Synchrocheck (ΔV/Δa/Δf; 25)

MONITORING:

- Current transformer supervision (CTS)
- Voltage transformer supervision (VTS; 60)
- Circuit breaker wear monitoring (CBW)
- Current total harmonic distortion (THD)
- Fault locator (21FL)
- Disturbance records: 100 (à 5 s 3.2 kHz sampling)
- Non-volatile event records: 15,000

COMMUNICATION:


- Phase, sequence, and residual currents (IL1, IL2, IL3, I01, I02)
- Phase, sequence, and residual voltages (UL1, UL2, UL3, UL12, UL23, UL31, U0)
- Frequency (f)
- Power (P, Q, S, cos φ) and energy (E+, E-, Eq+, Eq-)
- Power and energy measurement accuracy 0.5%
- Power and energy measurement accuracy 0.2% (optional)

HARDWARE:

- Standard features:**
 - Digital inputs: 3
 - Output relays: 5
 - Current inputs: 5
 - Voltage inputs: 4
 - Empty module slots: 3
- Optional hardware modules:**
 - Digital input module: 8 inputs
 - Digital output module: 5 outputs
 - Milliampere output module: 4 outputs + 1 input
 - Arc protection module: 4 sensor channels + 2 HSO + 1 BI
 - External I/O modules (see the "Accessories" page)

COMMUNICATION:

- Standard inputs:**
 - 1 port with RJ-45 Ethernet 100 MB (front)
 - 1 port with RJ-45 Ethernet 100 MB (rear, COM A)
 - 1 port with RS-485 (rear, COM 1)
- Optional modules:**
 - 2 x RJ-45 Ethernet (100 MB/s) + IRIG-B input
 - 2 x ST Ethernet (100 MB/s) + IRIG-B input
 - 2 x LC Ethernet (100 MB/s, PRP/HSR)
 - RS-232 serial fiber (PP/PG/GP/GG)
- Protocols:**
 - IEC 61850 (1st Edition)
 - IEC 60870-5-101/104
 - IEC 60870-5-103
 - Modbus/RTU and Modbus/TCP
 - DNP3
 - SPA

AQ-T216 TRANSFORMER PROTECTION DEVICE

AQ-T216 is a transformer protection device with sophisticated and easy-to-use differential protection functions. The relay provides overcurrent protection for both low-voltage and high-voltage sides, earth fault protection, negative sequence overcurrent protection as well as two independent instances of restricted earth fault protection. Additionally, AQ-T216 can be applied to generator and motor differential protection. AQ-T216 communicates using various protocols, including the IEC 61850.

HIGHLIGHTS:

- Both predefined and customizable connection group selection.
- 2nd and 5th harmonic blocking.
- Automatic verification for the connection group and nominal value settings.
- Overloading and through fault statistics for preventative maintenance.

PROTECTION:

- Non-directional overcurrent (I>; 50/51)
- Non-directional earth fault (I0>; 50N/51N)
- Negative sequence overcurrent / Phase current reversal / Current unbalance (I2>; 46/46R/46L)
- Harmonic overcurrent (Ih>; 50H/51H/68H)
- Circuit breaker failure protection (CBFP; 50BF/52BF)
- High- and low-impedance restricted earth fault (Idr>; 87N)
- Resistance temperature detectors (RTD)
- Transformer status monitoring (TRF)
- Transformer thermal overload (TT>; 49T)
- Programmable stage (PSx>/<; 99)
- Arc protection (IArc>/10Arc>; 50Arc/50Narc) (optional)

CONTROL:

- Objects to control and monitor (OBJ): 5
- Indicator objects to monitor (IND): 5
- Setting groups (SGS): 8
- Cold load pick-up (CLPU)

MONITORING:

- Current transformer supervision (CTS) (2 instances)
- Circuit breaker wear monitoring (CBW)
- Current total harmonic distortion (THD)
- Disturbance records: 100 (à 5 s 3.2 kHz sampling)
- Non-volatile event records: 15,000

MEASUREMENTS:

- Phase, sequence, and residual currents (IL1, IL2, IL3, I01, I02)
- Frequency (f)

HARDWARE:

- Standard features:**
 - Digital inputs: 3
 - Output relays: 5
 - Current inputs: 10
 - Empty module slots: 2
- Optional hardware modules:**
 - Digital input module: 8 inputs
 - Digital output module: 5 outputs
 - Milliampere output module: 4 outputs + 1 input
 - Arc protection module: 4 sensor channels + 2 HSO + 1 BI
 - External I/O modules (see the "Accessories" page)

COMMUNICATION:

- Standard inputs:**
 - 1 port with RJ-45 Ethernet 100 MB (front)
 - 1 port with RJ-45 Ethernet 100 MB (rear, COM A)
 - 1 port with RS-485 (rear, COM 1)
- Optional modules:**
 - 2 x RJ-45 Ethernet (100 MB/s) + IRIG-B input
 - 2 x ST Ethernet (100 MB/s) + IRIG-B input
 - 2 x LC Ethernet (100 MB/s, PRP/HSR)
 - RS-232 serial fiber (PP/PG/GP/GG)
- Protocols:**
 - IEC 61850 (1st Edition)
 - IEC 60870-5-101/104
 - IEC 60870-5-103
 - Modbus/RTU and Modbus/TCP
 - DNP3
 - SPA

AQ-S214 ALARM AND INDICATION DEVICE

[READ MORE](#)

The AQ-S214 alarm and indication device can be applied to various substation tasks, such as extending the general I/O, sounding alarms, and control. You can add up to 6 I/O or communication modules into the device, depending on the requirements of your application. The logic programming is powerful and easy to use. This also further expands the device's application range towards more demanding control, alarm and indication needs. The HMI is large and can be freely programmed, and it provides a quick visualization of the object as well as the status of alarms and events. AQ-S214 communicates using various protocols, including the IEC 61850.

PROTECTION:

- Resistance temperature detectors (RTD)
- Programmable stage (PSx>/< 99)

ALARM, CONTROL, AND INDICATIONS:

- Objects to control and monitor (OBJ): 10
- Indicator objects to monitor (IND): 5
- Setting groups (SGS): 8
- Alarms to program: 64
- Disturbance records: 100 (á 5 s 3.2 kHz sampling)
- Non-volatile event records: 15,000

HARDWARE:

- Standard features:**
 - Digital inputs: 3
 - Output relays: 5
 - Empty module slots: 6
- Optional hardware modules:**
 - Digital input module: 8 inputs
 - Digital output module: 5 outputs
 - Milliampere output module: 4 outputs +1 input
 - External I/O modules (see the "Accessories" page)

COMMUNICATION:

- Standard inputs:**
 - 1 port with RJ-45 Ethernet 100 MB (front)
 - 1 port with RJ-45 Ethernet 100 MB (rear, COM A)
 - 1 port with RS-485 (rear, COM 1)
- Optional modules:**
 - 2 x RJ-45 Ethernet (100 MB/s) + IRIG-B input
 - 2 x ST Ethernet (100 MB/s) + IRIG-B input
 - 2 x LC Ethernet (100 MB/s, PRP/HSR)
 - RS-232 serial fiber (PP/PG/GP/GG)
- Protocols:**
 - IEC 61850 (1st Edition)
 - IEC 60870-5-101/104
 - IEC 60870-5-103
 - Modbus/RTU and Modbus/TCP
 - DNP3
 - SPA

AQ-S215 BAY CONTROL DEVICE

[READ MORE](#)

The AQ-S215 bay control device can be applied to various types of control applications. AQ-S215 comes with full current, voltage, power and energy measurement capabilities, and the relay can be equipped with up to 3 I/O or communication modules, depending on the requirements of your application. The logic programming is powerful and easy to use, and it further expands the device's application range. The HMI is large and can be freely programmed, and provides a quick visualization of the status of objects, alarms, and events. AQ-S215 communicates using various protocols, including the IEC 61850.

PROTECTION:

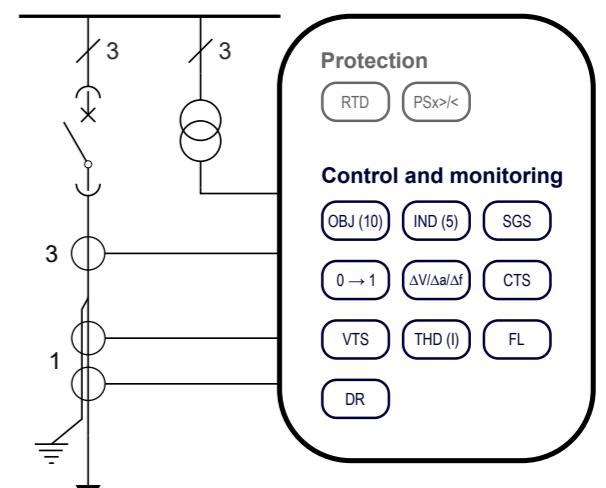
- Resistance temperature detectors (RTD)
- Programmable stage (PSx>/< 99)
- Voltage memory

CONTROL:

- Objects to control and monitor (OBJ): 10
- Indicator objects to monitor (IND): 5
- Setting groups (SGS): 8
- Auto-recloser (0 – 1; 79)
- Synchrocheck (ΔV/Δa/Δf; 25)

MONITORING:

- Current transformer supervision (CTS)
- Voltage transformer supervision (VTS; 60)
- Current total harmonic distortion (THD)
- Fault locator (21FL)
- Disturbance records: 100 (á 5 s 3.2 kHz sampling)
- Non-volatile event records: 15,000


MEASUREMENTS:

- Phase, sequence, and residual currents (IL1, IL2, IL3, IO1, IO2)
- Phase, sequence, and residual voltages (UL1, UL2, UL3, UL12, UL23, UL31, U0)
- Frequency (f)
- Power (P, Q, S, cos φ) and energy (E+, E-, Eq+, Eq-)
- Power and energy measurement accuracy 0.5%
- Power and energy measurement accuracy 0.2% (optional)

HARDWARE:

- Standard features:**
 - Digital inputs: 3
 - Output relays: 5
 - Current inputs: 5
 - Voltage inputs: 4
 - Empty module slots: 3
- Optional hardware modules:**
 - Digital input module: 8 inputs
 - Digital output module: 5 outputs
 - Milliampere output module: 4 outputs +1 input
 - External I/O modules (see the "Accessories" page)

AQ-S215

AQ-P215 POWER MONITORING DEVICE

[READ MORE](#)

AQ-P215 is a novel power monitoring device for demanding metering and power monitoring applications. AQ-P215 offers a unique combination: the high-accuracy power and energy measurement of 0.2 % is paired with a dynamic measurement range of up to 250 A (secondary current). Data logging in the flash memory is freely configurable, and the programmable logic and disturbance recorder features allow for a variety of power quality monitoring applications. AQ-P215 communicates using various protocols, including the IEC 61850.

POWER MONITORING:

- Resistance temperature detectors (RTD)
- Programmable stage (PSx>/<99)
- Voltage memory

POWER QUALITY AND DATA LOGGING:

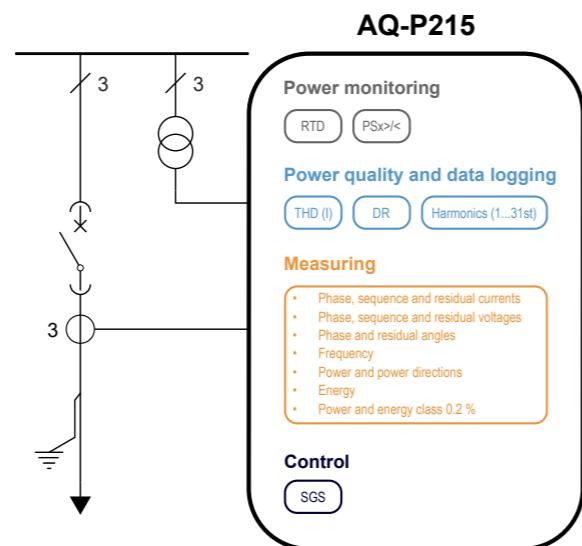
- Voltage and current harmonics (up to 31st)
- Current total harmonic distortion (THD)
- Disturbance records: 100 (á 5 s 3.2 kHz sampling)
- Non-volatile event records: 15,000

CONTROL:

- Setting groups (SG5): 8

MEASUREMENTS:

- Phase, sequence, and residual currents (IL1, IL2, IL3, IO1, IO2)
- Phase, sequence, and residual voltages (UL1, UL2, UL3, UL12, UL23, UL31, UO)
- Phase and residual angles
- Frequency (f)
- Power (P, Q, S) and energy (E+, E-, Eq+, Eq-)

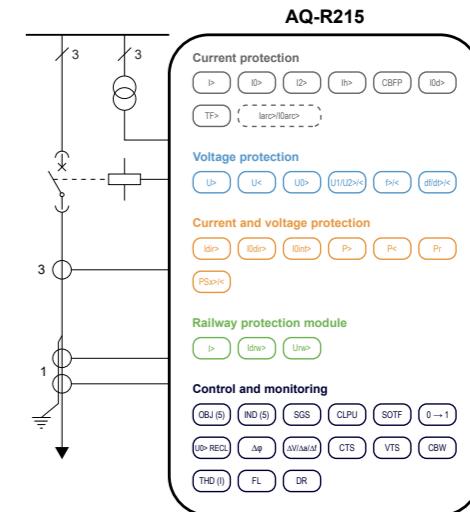

- Power directions (tan ϕ and cos ϕ)
- Power and energy measurement accuracy 0.2 %

HARDWARE:

- Standard features:**
 - Digital inputs: 3
 - Output relays: 5
 - Current inputs: 5
 - Voltage inputs: 4
 - Empty module slots: 3
- Optional hardware modules:**
 - Digital input module: 8 inputs
 - Digital output module: 5 outputs
 - Milliampere output module: 4 outputs + 1 input
 - External I/O modules (see the "Accessories" page)

COMMUNICATION:

- Standard inputs:**
 - 1 port with RJ-45 Ethernet 100 MB/s
 - 2 x ST Ethernet (100 MB/s) + IRIG-B input
 - 2 x LC Ethernet (100 MB/s, PRP/HSR)
 - RS-232 serial fiber (PP/PG/GP/GG)
- Protocols:**
 - IEC 61850 (1st Edition)
 - IEC 60870-5-101/104
 - IEC 60870-5-103
 - Modbus/RTU and Modbus/TCP
 - DNP3
 - SPA


AQ-R215 RAILWAY PROTECTION DEVICE

[READ MORE](#)

AQ-R215 railway protection device is a three-phase feeder protection device that can be run either in Standard feeder mode or in Railway mode. In Railway mode the device provides a single-phase overcurrent, earth fault, and voltage protections. Each protection stage can be independently set to the frequency of 16.67 Hz or of 50/60 Hz. When in Standard mode the functionality of AQ-R215 is identical to that of the AQ-F215 feeder protection device. In this mode the relay can also be dynamically set to run on a frequency between 6 and 75 Hz.

You can add up to 3 I/O or communication modules into the device for more demanding control, alarm and indication needs. AQ-R215 railway protection device communicates using various protocols, including the IEC 61850.

HIGHLIGHTS:

- Single-phase protection for any frequency range between 6 and 75 Hz.
- Double busbar control.
- Directional overcurrent and voltage protection.
- Low-impedance restricted earth fault protection.
- Harmonics protection (up to 31st).
- 5-shot scheme-controlled auto-recloser.

PROTECTION (RAILWAY MODE):

- Railway non-directional overcurrent (I>: 51/51N)
- Railway directional overcurrent (Idrw>: 67)
- Railway voltage (Urw>/<: 27/59)

PROTECTION (STANDARD MODE):

- Non-directional overcurrent (I>: 50/51)
- Non-directional earth fault (I0>: 50N/51N)
- Directional overcurrent (Idir>: 67)
- Directional earth fault (Idir>: 67N/32N)
- Intermittent earth fault (I0int>: 67NT)
- Negative sequence overcurrent / Phase current reversal / Current unbalance (I2>, 46/46R/46L)
- Harmonic overcurrent (Ihs>: 50H/51H/60H)
- Circuit breaker failure protection (CBFP; 50BF/52BF)
- High- and low-impedance restricted earth fault / Cable-end differential (I0d>: 87N)
- Overvoltage (U>: 59)
- Undervoltage (U<: 27)
- Neutral overvoltage (U0>: 59N)
- Sequence voltage (U1/U2><: 47/27P/59PN)
- Over- and underfrequency (f>/<: 810/81U)
- Rate-of-change of frequency (df/dt>/<: 81R)
- Overpower (P>: 32U)
- Underpower (P<: 32U)
- Reverse power (Prev>: 32R)
- Resistance temperature detectors (RTD)
- Line thermal overload (TF>: 49F)
- Programmable stage (PSx>/<: 99)
- Arc protection (IArc>/IArc<: 50Arc/50Narc) (optional)
- Voltage memory

CONTROL:

- Objects to control and monitor (OBJ): 5
- Indicator objects to monitor (IND): 5
- Setting groups (SGS): 8
- Cold load pick-up (CLPU)
- Switch-on-to-fault (SOTF)
- Vector jump (Ap: 78)
- Auto-recloser (0 → 1; 79)
- Zero sequence recloser (U0>: RECL; 79N)
- Synchrocheck (ΔV/ΔA/Δf: 25)

MONITORING:

- Current transformer supervision (CTS)
- Voltage transformer supervision (VTS; 60)
- Circuit breaker wear monitoring (CBW)
- Current total harmonic distortion (THD)
- Fault locator (21FL)
- Disturbance records: 100 (á 5 s 3.2 kHz sampling)
- Non-volatile event records: 15,000

MEASUREMENTS:

- Phase, sequence, and residual currents (IL1, IL2, IL3, IO1, IO2)
- Phase, sequence, and residual voltages (UL1, UL2, UL3, UL12, UL23, UL31, UO)
- Frequency (f)
- Power (P, Q, S, cos ϕ) and energy (E+, E-, Eq+, Eq-)
- Power and energy measurement accuracy 0.5 %
- Power and energy measurement accuracy 0.2 % (optional)
- Voltage memory

HARDWARE:

- Standard features:**
 - Digital inputs: 3
 - Output relays: 5
 - Current inputs: 5
 - Voltage inputs: 4
 - Empty module slots: 3
- Optional hardware modules:**
 - Digital input module: 8 inputs
 - Digital output module: 5 outputs
 - Milliampere output module: 4 outputs + 1 input
 - Arc protection module: 4 sensor channels + 2 HS0 + 1 BI
 - External I/O modules (see the "Accessories" page)

COMMUNICATION:

- Standard inputs:**
 - 1 port with RJ-45 Ethernet 100 MB (front)
 - 1 port with RJ-45 Ethernet 100 MB (rear, COM A)
 - 1 port with RS-485 (rear, COM 1)
- Optional modules:**
 - 2 x RJ-45 Ethernet (100 MB/s) + IRIG-B input
 - 2 x ST Ethernet (100 MB/s) + IRIG-B input
 - 2 x LC Ethernet (100 MB/s, PRP/HSR)
 - RS-232 serial fiber (PP/PG/GP/GG)
- Protocols:**
 - IEC 61850 (1st Edition)
 - IEC 60870-5-101/104
 - IEC 60870-5-103
 - Modbus/RTU and Modbus/TCP
 - DNP3
 - SPA

CURRENT MEASUREMENT MODULE

Used for basic current measurements, the module has 5 channels: 3 three-phase current measurement inputs as well as 2 residual current inputs (coarse and fine). It can be ordered with standard or ring-lug connectors. The module is connected to the secondary side of a conventional CT. The module's nominal current can be freely set within the range from 0.2 to 10.0 A. Its measurement ranges are 25 mA...250 A (IL1-IL3), 5 mA...150 A (I01) and 1 mA...75 A (I02).

VOLTAGE MEASUREMENT MODULE (4 CHANNELS)

Used for basic voltage measurements, the module has 4 channels. The inputs can be configured freely. The module is connected to the secondary side of a conventional VT, or directly to fuse-secured LV systems. The module's nominal voltage can be set between 0.2...400 V, and its measurement range is 0.5...480 V per channel.

VOLTAGE MEASUREMENT MODULE (3 CHANNELS)

Used for basic voltage measurements, the module has 3 channels. The inputs can be configured freely. The module also has 4 digital inputs. The module is connected to the secondary side of a conventional VT, or directly to fuse-secured LV systems. The module's nominal voltage can be set between 0.2...120.0 V, and its measurement range is 1...250.0 V per channel.

DIGITAL INPUT MODULE

Used for extending the I/O of a device, the module has 8 galvanically isolated digital inputs. Its properties follow those of the receiving device's CPU module (device series, auxiliary voltage range, and so on). The module's current consumption is 2 mA when activated, and its rated auxiliary voltage is 5...265 V AC/DC.

DIGITAL OUTPUT MODULE

Used for extending the I/O of a device, the module has 5 digital outputs. Its properties follow those of the receiving device's CPU module (device series, auxiliary voltage range, and so on). The module's rated auxiliary voltage is 265 V AC/DC.

HIGH-SPEED HIGH-CURRENT OUTPUT MODULE

The module extends the I/O of a device and has 3 high-speed and high-current outputs. All of the outputs have integrated trip circuit supervision in parallel. The module's rated auxiliary voltage is 265 V AC/DC.

ARC PROTECTION MODULE

Used for adding arc flash protection to a device, the module has 4 sensor channels, 2 high-speed outputs, and 1 binary input. Each sensor channel can have up to 3 point sensors connected serially, activated by arc light or by arc light and pressure. The high-speed outputs have a voltage withstand of max. 250 V DC. The binary input can be used for external light information or as a part of an arc scheme.

RTD INPUT MODULE

Used for adding RTD measurements to a device, the module has 8 RTD input channels. Each input supports 2-wire, 3-wire, and 4-wire RTD sensors. The sensor type can be selected for two groups (4 channels/group) in the AQtivate 200 software. The module supports Pt100 and Pt1000 RTD sensors.

MILLIAMPERE INPUT MODULE

Used for adding milliampere inputs and outputs to a device, the module has 4 mA inputs and 1 mA output. The inputs and the outputs are in galvanically isolated groups. Each channel has one pin for the positive connector and one pin for the negative connector. The scaling range for the inputs and the output is 0...24 mA.

MILLIAMPERE OUTPUT MODULE

Used for adding milliampere inputs and outputs to a device, the module has 4 mA outputs and 1 mA input. The inputs and the outputs are in galvanically isolated groups. Each channel has one pin for the positive connector and one pin for the negative connector. The scaling range for the outputs and the input is 0...24 mA.

2 × RJ-45 + IRIG-B COMMUNICATION MODULE

Used for multidrop configurations, the module has 2 RJ-45 connectors and a two-pin connector. The RJ-45 ports support 10BASE-T and 100BASE-TX Ethernet communication. The two-pin connector is used as an IRIG-B timecode input.

2 × ST + IRIG-B COMMUNICATION MODULE

This communication module has 2 100BASE-FX ST connectors that are compatible with 62.5/125 µm or 50/125 µm multimode fibers of up to 2 km. In addition, it has a two-pin connector, which is used as an IRIG-B timecode input.

2 × SFP + IRIG-B COMMUNICATION MODULE

The communication module is used in multidrop configurations and has 2 SFP-module slots and a two-pin connector for IRIG-B timecode input. The SFP slots support 100 Mbps data speed. This communication module requires one or two SFP modules that are available as accessories:

- 2 km multi-mode fiber (1310 nm)
- 40 km single-mode fiber (1310 nm)
- 120 km single-mode fiber (1550 nm)

2 × LC COMMUNICATION MODULE (HSR, PRP)

Used for HSR and PRP redundancy protocols, the module has 2 LC connectors that support 100MBps data speed and are compatible with 62.5/125 µm or 50/125 µm multimode glass fibers. Their wavelength is 1300 nm.

2 × RJ-45 COMMUNICATION MODULE (HSR, PRP)

Used for HSR and PRP redundancy protocols, the module has 2 RJ-45 connectors. The RJ-45 ports support 10BASE-T and 100BASE-TX Ethernet communication.

RS-232 SERIAL COMMUNICATION MODULE

Used for serial communication, the module has 1 RS-232 interface and 1 serial fiber interface. The serial fiber interface is compatible with ST connectors, and the fiber can be GG/PG/GP/PP. The fiber interface is compatible with 50/125 µm, 62.5/125 µm, 100/140 µm, and 200 µm plastic-clad silica (PCS) fibers.

Raising frame

When using a raising frame for installing an AQ 250 series protection device to a cabinet door, it leaves additional room for other installation equipment in the space behind the door. We offer two raising frame options: the first is 40 mm deep (AX014), and the other 120 mm deep (AX013). The selection depends on how much you need the device to jut out from the background.

Wall-mounting bracket

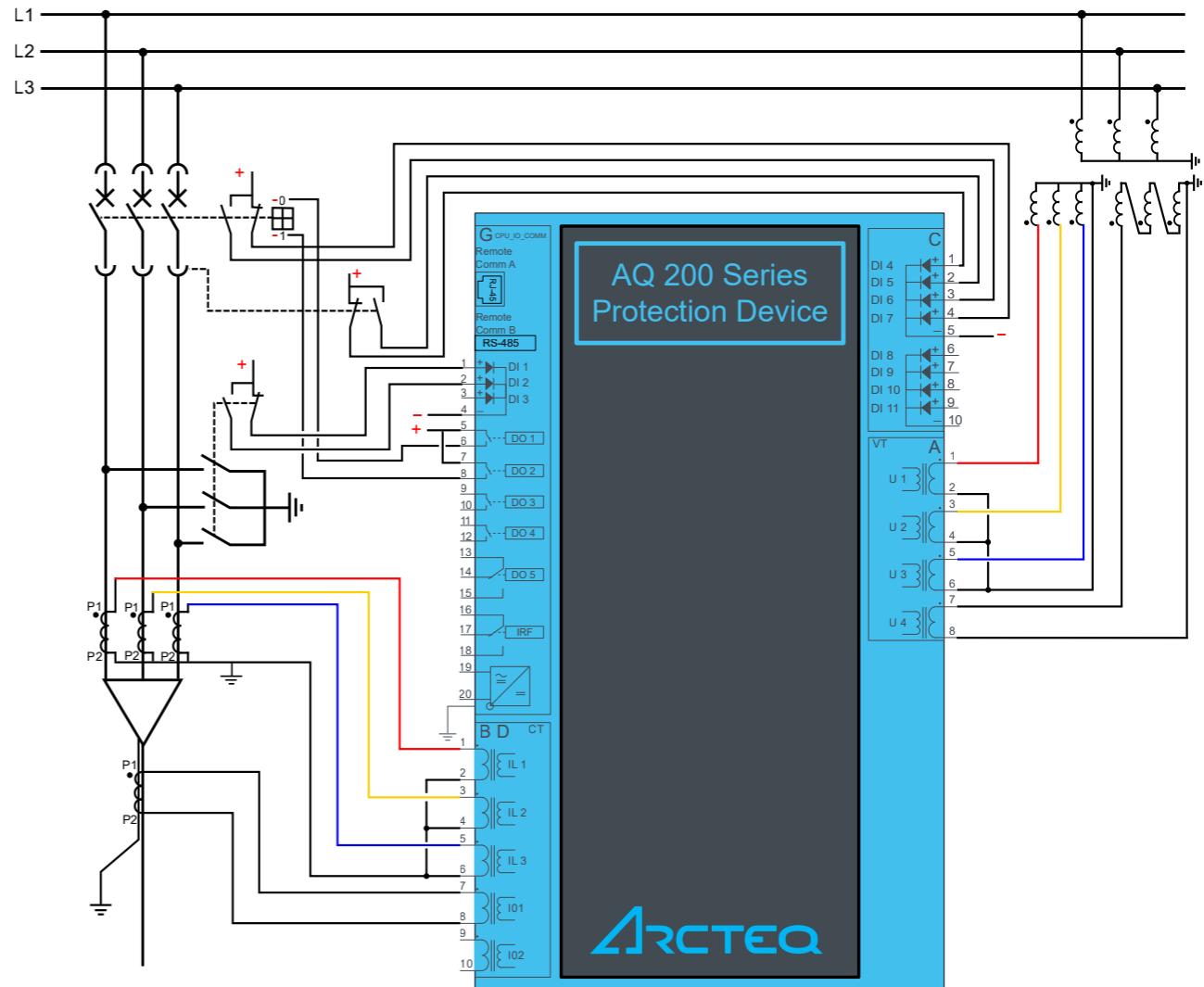
A wall-mounting bracket (AX015) is used for mounting an AQ 250 series protection device on a wall. The arm is fastened to the wall and then the device itself is mounted on the bracket and locked into place.

Raising frame

When using a raising frame for installing an AQ 210 series protection device to a cabinet door, it leaves additional room for other installation equipment in the space behind the door. We offer two raising frame options: the first is 40 mm deep (AX010), and the other 87 mm deep (AX009). The selection depends on how much you need the device to jut out from the background.

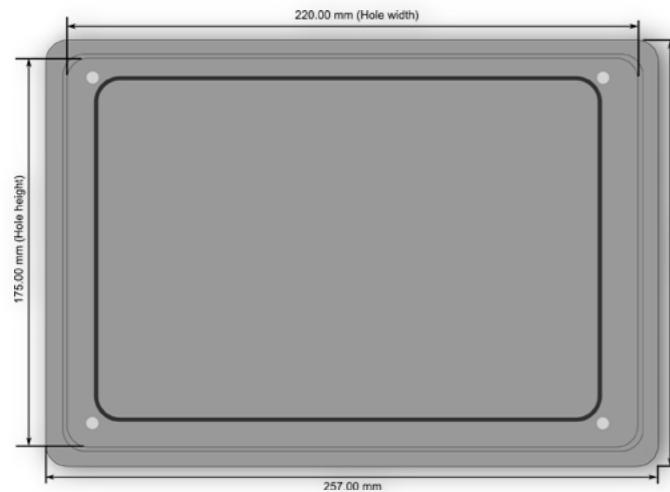
Wall-mounting bracket

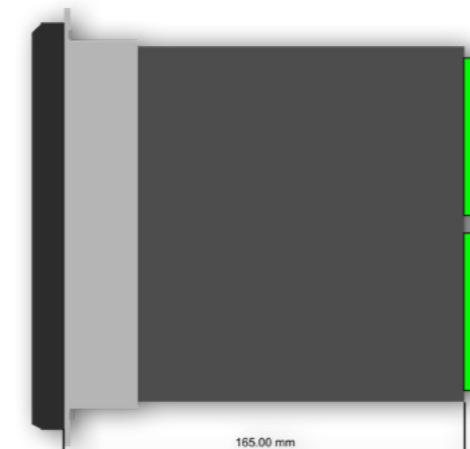
A wall-mounting bracket (AX012) is used for mounting an AQ 210 series protection device on a wall. The arm is fastened to the wall and then the device itself is mounted on the bracket and locked into place.


COMBIFLEX frame

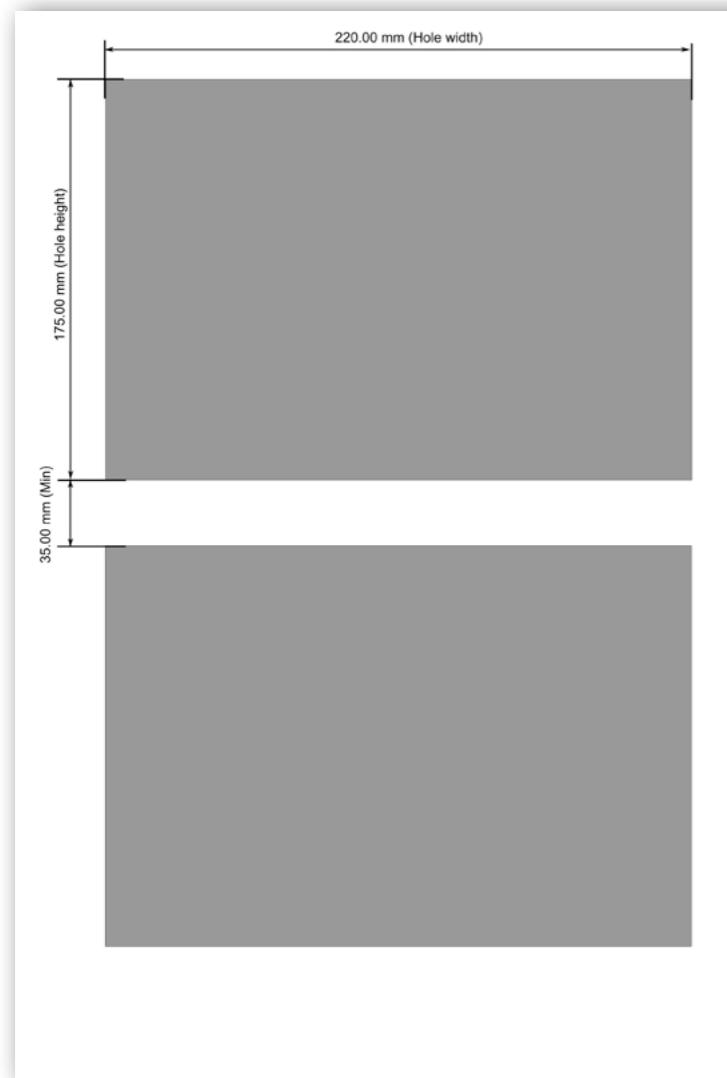
The COMBIFLEX frame (AX011) allows you to install an AQ 210 series device directly into a modular COMBIFLEX system.

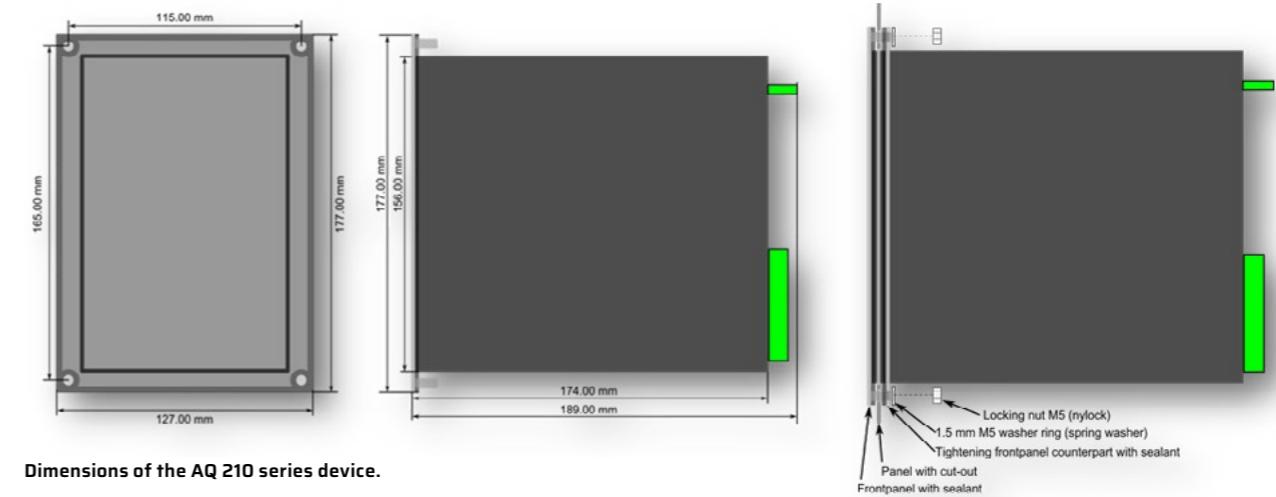
Disturbance tests	
Emissions	
Conducted emissions: EN 60255-26 (Ch. 5.2), CISPR 22	150 kHz...30 MHz
Radiated emissions: EN 60255-26 (Ch. 5.1), CISPR 11	30...1,000 MHz
Immunity	
Electrostatic discharge (ESD): EN 60255-26, IEC 61000-4-2	15 kV (air discharge) 8 kV (contact discharge)
Electrical fast transients (EFT): EN 60255-26, IEC 61000-4-4	4 kV, 5/50 ns, 5 kHz (power supply input) 4 kV, 5/50 ns, 5 kHz (other inputs and outputs)
Surge: EN 60255-26, IEC 61000-4-5	2 kV, 1.2/50 μ s (between wires) 4 kV, 1.2/50 μ s (between wire and earth)
Radiated RF electromagnetic field: EN 60255-26, IEC 61000-4-3	f = 80...1,000 MHz, 10 V/m
Conducted RF field: EN 60255-26, IEC 61000-4-6	f = 150 kHz...80 MHz, 10 V (RMS)
Voltage tests	
Dielectric voltage test	
EN 60255-27, IEC 60255-5, EN 60255-1	2 kV, 50 Hz, 1 min
Impulse voltage test	
EN 60255-27, IEC 60255-5	5 kV, 1.2/50 μ s, 0.5 J
Mechanical tests	
Vibration test	
EN 60255-1, EN 60255-27, IEC 60255-21-1 (Class 1)	2...13.2 Hz, ± 3.5 mm 13.2...100 Hz, ± 1.0 g
Shock and bump test	
EN 60255-1, EN 60255-27, IEC 60255-21-2 (Class 2)	20 g 1,000 bumps/direction
Environmental tests	
Damp heat (cyclic)	
EN 60255-1, IEC 60068-2-30	Operational: +25...+55 °C, 93...97 % (RH), 12+12 h
Dry heat	
EN 60255-1, IEC 60068-2-2	Storage: +70 °C, 16 h Operational: +55 °C, 16 h
Cold test	
EN 60255-1, IEC 60068-2-1	Storage: -40 °C, 16 h Operational: -20 °C, 16 h


Environmental conditions	
IP classes	
Casing protection class	
IP54 (front)	IP21 (rear)
Temperature ranges	
Ambient service temperature range	-35...+70 °C
Transport and storage temperature range	-40...+70 °C
Other	
Altitude	<2,000 m
Overvoltage category	III
Pollution degree	2

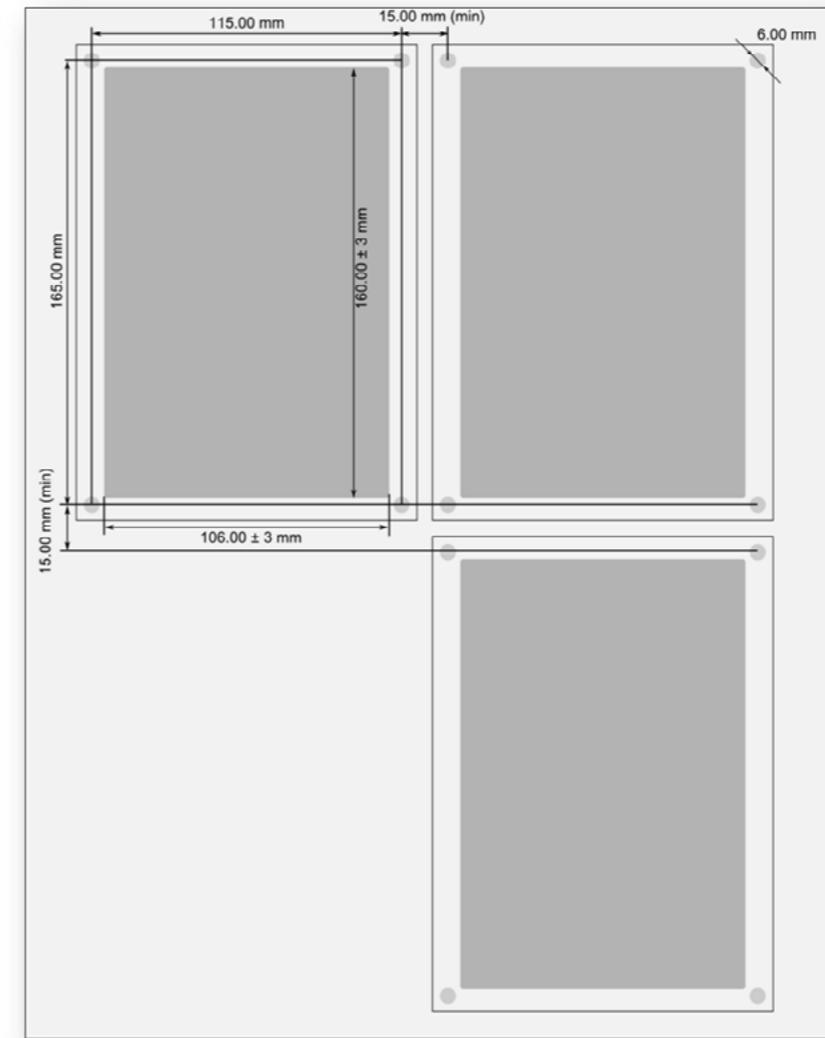

The figure above presents a typical AQ 200 series protection device wiring diagram as an example. The wiring includes current measurements for the three phase currents and the residual current, as well as the phase-to-neutral and residual voltage measurements. Alternative connections are also available: for example, you could have phase-to-phase voltage and Synchrocheck

reference voltage connections. With the AQtivate 200 software you can conveniently change the relevant settings, such as all analog channel measurement mode settings, polarities, and nominal values.


For more details about the wiring, please refer to the instruction manuals for specific AQ 200 series devices.


Dimensions of the AQ 250 series device.

Installation of the AQ 250 series device.



Panel cut-out and spacing of the AQ 250 series device.

Dimensions of the AQ 210 series device.

Installation of the AQ 210 series device.

Panel cut-out and spacing of the AQ 210 series device.

■ PART OF ENSTO GROUP

HEADQUARTERS

Arcteq Relays Ltd
Kvartsikatu 2 A 1
65300 Vaasa, Finland
Business ID: 2342569-3
tel: +358 10 3221 370

MAIL INQUIRIES:

sales@arcteq.com

TECHNICAL SUPPORT:

arcteq.com/support

ARCTEQ SUPPORT LINE:

+358 10 3221 388
EET 9:00 - 17:00

ARCTEQ.COM

Learn about the most
accurate protection
relays in the world.