

AQ-C255

Capacitor bank protection device

Instruction manual

Table of contents

1 Document information	6
1.1 Version 2 revision notes	6
1.2 Safety information	
1.3 Abbreviations	10
2 General	12
3 Device user interface	13
3.1 Panel structure	13
3.1.1 Local panel structure	
3.2 Configuring user levels and their passwords	
4 Functions	16
4.1 Functions included in AQ-C255	16
4.2 Measurements	
4.2.1 Current measurement and scaling	19
4.2.2 Voltage measurement and scaling	33
4.2.3 Power and energy calculation	
4.2.4 Frequency tracking and scaling	
4.3 General menu	
4.4 Protection functions	
4.4.1 General properties of a protection function	
4.4.2 Capacitor bank module	
4.4.3 Capacitor bank overload protection (Icol>; 49OL)	
4.4.4 Capacitor bank neutral unbalance protection (Cnu>; 50UB)	
4.4.5 Capacitor bank current unbalance protection (luc>; 46C)	
4.4.6 Non-directional overcurrent protection (I>; 50/51)	
4.4.7 Non-directional earth fault protection (I0>; 50N/51N)	
4.4.8 Directional overcurrent protection (Idir>; 67) 4.4.9 Directional earth fault protection (I0dir>; 67N/32N)	
4.4.9 Directional earth fault protection (I0int>; 67N/32N)	
4.4.11 Negative sequence overcurrent/ phase current reversal/ current unbalance protection	
(I2>; 46/46R/46L)	
4.4.12 Harmonic overcurrent protection (Ih>; 50H/51H/68H)	
4.4.13 Circuit breaker failure protection (CBFP; 50BF/52BF)	
4.4.14 Low-impedance or high-impedance restricted earth fault/ cable end differential	
protection (IOd>; 87N)	155
4.4.15 Overvoltage protection (U>; 59)	164
4.4.16 Undervoltage protection (U<; 27)	171
4.4.17 Neutral overvoltage protection (U0>; 59N)	179
4.4.18 Sequence voltage protection (U1/U2>/<; 47/27P/59PN)	
4.4.19 Overfrequency and underfrequency protection (f>/<; 81O/81U)	
4.4.20 Rate-of-change of frequency (df/dt>/<; 81R)	
4.4.21 Power protection (P, Q, S>/<; 32)	202
4.4.22 Line thermal overload protection (TF>; 49F)	
4.4.23 Resistance temperature detectors (RTD)	
4.4.24 Programmable stage (PSx>/<; 99)	
4.4.25 Arc fault protection (IArc>/I0Arc>; 50Arc/50NArc)	
4.5 Control functions	
4.5.1 Common signals	
4.5.2 Setting group selection 4.5.3 Object control and monitoring	
4.5.4 Indicator object monitoring	
4.5.5 Cold load pick-up (CLPU)	
4.5.6 Switch-on-to-fault (SOTF)	

4.5.7 Milliampere output control	
4.5.8 Power factor controller (90PF)	
4.5.9 Programmable control switch	
4.5.10 User buttons	
4.5.11 Analog input scaling curves 4.5.12 Logical outputs	
4.5.13 Logical inputs	
4.6 Monitoring functions	
4.6.1 Current transformer supervision	
4.6.2 Voltage transformer supervision (60)	
4.6.3 Current total harmonic distortion (THD)	
4.6.4 Voltage total harmonic distortion (THD)	
4.6.5 Disturbance recorder (DR)	
4.6.6 Event logger	
4.6.7 Measurement recorder	
4.6.8 Measurement value recorder	
5 Communication	348
5.1 Connections menu	
5.2 Time synchronization	
5.2.1 Internal	
5.2.2 NTP	
5.2.3 PTP	
5.3 Communication protocols	
5.3.1 IEC 61850	
5.3.1.1 Logical device mode and logical node mode 5.3.1.2 GOOSE	
5.3.2 Modbus/TCP and Modbus/RTU	
5.3.3 IEC 103	
5.3.4 IEC 101/104	
5.3.5 SPA	
5.3.6 DNP3	368
5.3.7 Modbus I/O	
5.4 Analog fault registers	
5.5 Modbus Gateway	372
6 Connections and application examples	377
6.1 Connections of AQ-C255	377
6.2 Application example and its connections	
6.3 Two-phase, three-wire ARON input connection	
6.4 Trip circuit supervision (95)	382
7 Construction and installation	386
7.1 Construction	386
7.2 CPU module	
7.3 Current measurement module	
7.4 Voltage measurement module	
7.5 Option cards	
7.5.1 Digital input module (optional)	
7.5.2 Digital output module (optional)	
7.5.3 Point sensor arc protection module (optional) 7.5.4 RTD input module (optional)	
7.5.5 Serial RS-232 communication module (optional)	
7.5.6 LC or RJ45 100 Mbps Ethernet communication module (optional)	
7.5.7 Double ST 100 Mbps Ethernet communication module (optional)	
7.5.8 Double RJ45 10/100 Mbps Ethernet communication module (optional)	
7.5.9 Milliampere output (mA) I/O module (optional)	
7.6 Dimensions and installation	
8 Technical data	410

8.1 Hardware	410
8.1.1 Measurements	
8.1.1.1 Current measurement	
8.1.1.2 Voltage measurement	
8.1.1.3 Voltage memory	
8.1.1.4 Power and energy measurement	
8.1.1.5 Frequency measurement	
8.1.2 CPU & Power supply	
8.1.2.1 Auxiliary voltage	
8.1.2.2 CPU communication ports	
8.1.2.3 CPU digital inputs	
8.1.2.4 CPU digital outputs	
8.1.3 Option cards	
8.1.3.1 Digital input module	
8.1.3.2 Digital output module	
8.1.3.3 Point sensor arc protection module	
8.1.3.4 Milliampere output module (mA out & mA in)	
8.1.3.5 RTD input module	
8.1.3.6 RS-232 & serial fiber communication module	
8.1.3.7 Double LC 100 Mbps Ethernet communication module	
8.1.3.8 Double ST 100 Mbps Ethernet communication module	
8.1.4 Display	
3.2 Functions	
8.2.1 Protection functions	
8.2.1.1 Capacitor bank overload protection (Icol>; 49OL)	
8.2.1.2 Capacitor bank neutral unbalance protection (Cnu>; 50UB)	
8.2.1.3 Capacitor bank current unbalance protection (luc>; 46C)	
8.2.1.4 Non-directional overcurrent protection (I>; 50/51)	
8.2.1.5 Non-directional earth fault protection (I0>; 50N/51N)	
8.2.1.6 Directional overcurrent protection (Idir>; 67)	
8.2.1.7 Directional earth fault protection (I0dir>; 67N/32N)	
8.2.1.8 Intermittent earth fault protection (I0int>; 67NT)	43´
8.2.1.9 Negative sequence overcurrent/ phase current reversal/ current unba	lance
protection (I2>; 46/46R/46L)	
8.2.1.10 Harmonic overcurrent protection (Ih>; 50H/51H/68H)	
8.2.1.11 Circuit breaker failure protection (CBFP; 50BF/52BF)	
8.2.1.12 Low-impedance or high-impedance restricted earth fault/ cable end	
differential protection (IOd>; 87N)	435
8.2.1.13 Overvoltage protection (U>; 59)	
8.2.1.14 Undervoltage protection (U<; 27)	
8.2.1.15 Neutral overvoltage protection (U0>; 59N)	
8.2.1.16 Sequence voltage protection (U1/U2>/<; 47/27P/59NP)	
8.2.1.17 Overfrequency and underfrequency protection (f>/<; 810/81U)	
8.2.1.18 Rate-of-change of frequency protection (df/dt>/<; 81R)	
8.2.1.19 Line thermal overload protection (TF>; 49F)	
8.2.1.20 Power protection (P, Q, S>/<; 32)	
8.2.1.21 Resistance temperature detectors (RTD)	
8.2.1.22 Arc fault protection (IArc>/I0Arc>; 50Arc/50NArc) (optional)	
8.2.2 Control functions	
8.2.2.1 Setting group selection	
8.2.2.2 Object control and monitoring	
8.2.2.3 Indicator object monitoring	
8.2.2.4 Cold load pick-up (CLPU)	
8.2.2.5 Switch-on-to-fault (SOTF)	
8.2.3 Monitoring functions	
8.2.3.1 Current transformer supervision	
8.2.3.2 Voltage transformer supervision (60)	
8.2.3.3 Current total harmonic distortion	
8.2.3.4 Disturbance recorder	
© Arcteq	rkeiays Lto

AQ-C255 Instruction manual

Version: 2.12

9 Ordering information	
10 Contact and reference information	on

Disclaimer

Please read these instructions carefully before using the equipment or taking any other actions with respect to the equipment. Only trained and qualified persons are allowed to perform installation, operation, service or maintenance of the equipment. Such qualified persons have the responsibility to take all appropriate measures, including e.g. use of authentication, encryption, anti-virus programs, safe switching programs etc. necessary to ensure a safe and secure environment and usability of the equipment. The warranty granted to the equipment remains in force only provided that the instructions contained in this document have been strictly complied with.

Nothing contained in this document shall increase the liability or extend the warranty obligations of the manufacturer Arcteq Relays Ltd. The manufacturer expressly disclaims any and all liability for any damages and/or losses caused due to a failure to comply with the instructions contained herein or caused by persons who do not fulfil the aforementioned requirements. Furthermore, the manufacturer shall not be liable for possible errors in this document.

Please note that you must always comply with applicable local legislation and regulations. The manufacturer gives no warranties that the content of this document is in all respects in line with local laws and regulations and assumes no liability for such possible deviations.

You are advised to notify the manufacturer in case you become aware of any errors in this document or of defects in the equipment.

The manufacturer reserves the right to update or amend this document at any time.

Copyright

Copyright © Arcteq Relays Ltd. 2024. All rights reserved.

1 Document information

1.1 Version 2 revision notes

Table. 1.1 - 1. Version 2 revision notes

Revision	2.00
Date	6.6.2019
Changes	 New more consistent look. Improved descriptions generally in many chapters. Improved readability of a lot of drawings and images. Updated protection functions included in every manual. Every protection relay type now has connection drawing, application example drawing with function block diagram and application example with wiring.
Revision	2.01
Date	6.11.2019
Changes	 Added description for LED test and button test. Added display sleep timer description. Complete rewrite of every chapter. Improvements to many drawings and formula images. Order codes revised.
Revision	2.02
Date	7.7.2020
Changes	 First revision of AQ-C255. Added chapters for "Capacitor bank module" and Icol> & Cnu> functions.
Revision	2.03
Date	27.8.2020

Changes	 Icol> function's Operating time settings updated. Terminology consistency improved (e.g. binary inputs are now always called digital inputs). Tech data modified to be more informative about what type of measurement inputs are used (phase currents/voltages, residual currents/voltages), what component of that measurement is available (RMS, TRMS, peak-to-peak) and possible calculated measurement values (powers, impedances, angles etc.). Tech data updated: non-directional overcurrent Tech data updated: non-directional overcurrent Tech data updated: current unbalance Tech data updated: overfrequency, underfrequency and rate-of-change-of-frequency. Improvements to many drawings and formula images. AQ-C2255 Functions included list Added: Capacitor bank protection module, capacitor bank overload protection. RTD, energy dose counter, non-directional undercurrent, feeder thermal overload protection. RTD, energy dose counter, non-directional undercurrent, feeder thermal overload protection. Added "32N" ANSI code to directional earth fault protection function from 103 % / 97 % to +/-20 mHz. Fixed reset ratio of rate-of-change-of-frequency protection function from 20 mHz/s to 100 mHz/s. Changed disturbance recorder maximum digital channel amount from 32 to 95. Added residual current coarse and fine measurement data to disturbance recorder description. Event read mode parameter added to Modbus description. HSO1 and HSO2 connection swapped in arc protection card (was way wrong before). Updated 101 and logical output function descriptions. Added inches to Dimensions and installation chapter. Added inches to Dimensions and installation chapter. Added note to Configuring user levels and passwords chapter that AQ-250 frame units generate a time-stamped event from locking and unlocking us
Revision	2.04
Date	8.6.2021
Changes	 Increased the consistency in terminology Various image upgrades Visual update to the order codes
Changes Revision	- Various image upgrades

Changes	 Fixed phase current measurement continuous thermal withstand from 30A to 20A. Fixed lots of timing errors written to registers table. "Prefault" is -200 ms from Start event, "Pretrigger" is -20 ms from trip (or start if fault doensn't progress to trip), "Fault" is start (or trip if fault doesn't progress to trip). Added event history technical data
Revision	2.06
Date	21.6.2022
Changes	 Improved descriptions generally in many chapters. Improved readability of a lot of drawings and images. Added intermittent earth fault function. Order codes have been revised. Added LN mode parameters to all functions (On, Blocked, Test, Test/Blocked, Off). Added color themes parameter description. Improved color sleep mode description. Improved alarm function color behavior description and images. Added operation time with different measurement values vs setting ratio in instant operation mode to non-directional overcurrent function description. Fixed bias calculation formula for restricted earth fault function. Was correctly in the code, just written wrong in the manual. Added 30 s pretriggering time for disturbance recorder (AQ-250 devices only). Added new trip detections and fault types to measurement value recorder. Added user description parameter descriptions for digital inputs, digital outputs, logical inputs, logical outputs and GOOSE inputs. Arc point sensor HSO1 and HSO2 position fixed. Added spare part codes and compatibilities to option cards.
Revision	2.07
Date	7.7.2022
Changes	 Added <u>THD voltage measurements</u>. Fixed number of <u>logical inputs</u>. Added <u>common signals</u> function description. Added <u>PTP time synchronization</u> description. Added <u>Modbus Gateway</u> description.
Revision	2.08
Date	8.9.2022
Changes	 Added stage forcing parameter to function descriptions. Fixes to "<u>Real time signals to comm</u>" description. Added "Ethernet port" parameter description to <u>IEC61850</u>, <u>IEC104</u> and <u>Modbus TCP</u> descriptions. Removed "Measurement update interval" settings from Modbus description. No longer in use. Renamed "System integration" chapter to "<u>Communication</u>" and restructured the chapters to be closer to how they are in the menus. Added "<u>Event logger</u>" chapter. Added more descriptions to new IEC 61850 ed2 GOOSE parameters. Added "Condition monitoring / CB wear" description to object description. Added "<u>User button</u>" description. Added logical device and logical node mode descriptions.
Changes	 Fixes to "Real time signals to comm" description. Added "Ethernet port" parameter description to IEC61850, IEC104 and Modbus TCP descriptions. Removed "Measurement update interval" settings from Modbus description. No longer in use. Renamed "System integration" chapter to "Communication" and restructured the chapters to be closer to how they are in the menus. Added "Event logger" chapter. Added more descriptions to new IEC 61850 ed2 GOOSE parameters. Added "Condition monitoring / CB wear" description to object description.

Changes	 Updated the Arcteq logo on the cover page and refined the manual's visual look. Added the "Safety information" chapter and changed the notes throughout the document accordingly. Changed the "IED user interface" chapter's title to "Device user interface" and replaced all 'IED' terms with 'device' or 'unit'. Updated the rated values for the change-over CPU digital outputs in "Technical data". Updated the input impedance for the voltage measurement module in "Technical data". Added double ethernet port configuration parameters to "Connections menu" chapter. Added event overload detection description to "Event logger" chapter.
Revision	2.10
Date	19.6.2023
Changes	- Updated order codes.
Revision	2.11
Date	29.11.2023
Changes	 Added the 5 ms update time in the measurement chapters. Added spring lock cage options for connectors. See the "Ordering information" chapter. Updated the contact address for technical support in the "Contact and reference information" chapter. Circuit breaker wear is not integrated to the objects.

1.2 Safety information

This document contains important instructions that should be saved for future use. Read the document carefully before installing, operating, servicing, or maintaining this equipment. Please read and follow all the instructions carefully to prevent accidents, injury and damage to property.

Additionally, this document contains four (4) types of special messages to call the reader's attention to useful information as follows:

NOTICE!

"Notice" messages indicate relevant factors and conditions to the the concept discussed in the text, as well as to other relevant advice.

CAUTION!

"Caution" messages indicate a potentially hazardous situation which, if not avoided, **could** result in minor or moderate personal injury, in equipment/property damage, or software corruption.

WARNING!

"Warning" messages indicate a potentially hazardous situation which, if not avoided, could result in death or serious personal injury as well as serious damage to equipment/property.

DANGER!

"Danger" messages indicate an imminently hazardous situation which, if not avoided, will result in death or serious personal injury.

These symbols are added throughout the document to ensure all users' personal safety and to avoid unintentional damage to the equipment or connected devices.

Please note that although these warnings relate to direct damage to personnel and/or equipment, it should be understood that operating damaged equipment may also lead to further, indirect damage to personnel and/or equipment. Therefore, we expect any user to fully comply with these special messages.

1.3 Abbreviations

- AI Analog input
- AR Auto-recloser
- ASDU Application service data unit
- AVR Automatic voltage regulator
- BCD Binary-coded decimal
- CB Circuit breaker
- CBFP Circuit breaker failure protection
- CLPU Cold load pick-up
- CPU Central processing unit
- CT Current transformer
- CTM Current transformer module
- CTS Current transformer supervision
- DG Distributed generation
- DHCP Dynamic Host Configuration Protocol
- DI Digital input
- DO Digital output
- DOL Direct-on-line
- DR Disturbance recorder
- DT Definite time
- FF Fundamental frequency
- FFT Fast Fourier transform
- FTP File Transfer Protocol
- GI General interrogation
- HMI Human-machine interface
- HR Holding register
- HV High voltage

1 Document information

- $\mathsf{HW}-\mathsf{Hardware}$
- IDMT Inverse definite minimum time
- IGBT Insulated-gate bipolar transistor
- I/O Input and output
- IRIG-B Inter-range instruction group, timecode B
- LCD Liquid-crystal display
- LED Light emitting diode
- LV Low voltage
- NC Normally closed
- NO Normally open
- NTP Network Time Protocol
- RMS Root mean square
- RSTP Rapid Spanning Tree Protocol
- RTD Resistance temperature detector
- RTU Remote terminal unit
- SCADA Supervisory control and data acquisition
- SG Setting group
- SOTF Switch-on-to-fault
- SW Software
- THD Total harmonic distortion
- TRMS True root mean square
- VT Voltage transformer
- VTM Voltage transformer module
- VTS Voltage transformer supervision

2 General

The AQ-C255 capacitor bank protection device is a member of the AQ 250 product line. The hardware and software are modular: the hardware modules are assembled and configured according to the application's I/O requirements, and the software determines the available functions. There are up to eleven (11) option card slots available for additional I/O or communication cards for more comprehensive monitoring and control applications. This manual describes the specific application of the AQ-C255 capacitor bank protection device. For other AQ 200 and AQ 250 series products please consult their respective device manuals.

3 Device user interface

3.1 Panel structure

The user interface section of an AQ 200 or AQ 250 series device is divided into two user interface sections: one for the hardware and the other for the software. You can access the software interface either through the front panel or through the AQtivate 200 freeware software suite.

3.1.1 Local panel structure

The front panel of AQ-250 series devices have multiple LEDs, control buttons and a local RJ-45 Ethernet port for configuration. Each unit is also equipped with an RS-485 serial interface and an RJ-45 Ethernet interface on the back of the device.

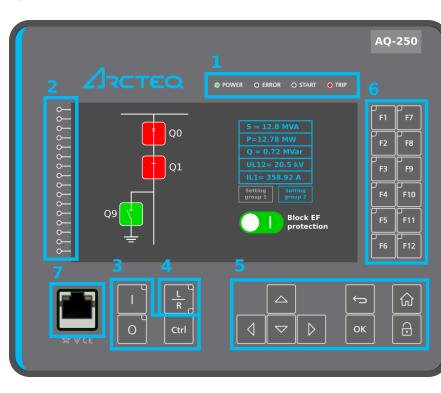


Figure. 3.1.1 - 1. Local panel structure.

- 1. Four (4) default LEDs: "Power", "Error", "Start" (configurable) and "Trip" (configurable).
- 2. Sixteen (16) freely configurable LEDs (red, orange, green) with programmable legend texts.
- 3. Three (3) object control buttons: Choose the controllable object with the Ctrl button and control the breaker or other object with the I and the O buttons.
- 4. The L/R button switches between the local and the remote control modes.
- 5. Eight (8) buttons for device local programming: the four navigation arrows, the **Back** and the **OK** buttons, the **Home** and the password activation buttons).
- 6. Twelve (12) freely configurable function buttons (F1...F12). Each button has a freely configurable LED (red, orange, green).
- 7. One (1) RJ-45 Ethernet port for device configuration.

When the unit is powered on, the green "Power" LED is lit. When the red "Error" LED is lit, the device has an internal (hardware or software) error that affects the operation of the unit. The activation of the yellow "Start" LED and the red "Trip" LED are based on the setting the user has put in place in the software.

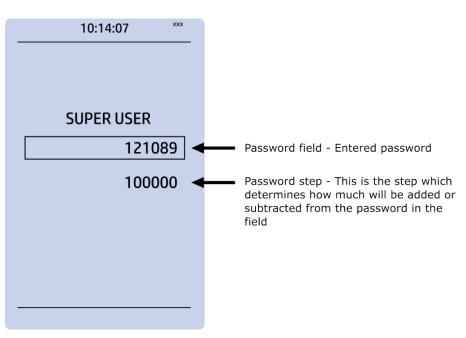
The sixteen freely configurable LEDs are located on the left side of the display. Their activation and color (green, orange, red) are based on the settings the user has put in place in the software.

The view in the screen is freely configurable. Virtual switches and buttons can be added which can be used to change the setting groups or control the device's general logic locally or remotely. The status of the object (circuit breaker, disconnector) can be displayed on the screen. All measured and calculated values regardless of the magnitude catecory (current, voltage, power, energy, frequency, etc.) can be shown on the screen.

Holding the I (object control) button down for five seconds brings up the button test menu. It displays all the physical buttons on the front panel. Pressing any of the listed buttons marks them as tested. When all buttons are marked as having been tested, the device will return back to the default view.

3.2 Configuring user levels and their passwords

As a factory default, no user level is locked with a password in a device. In order to activate the different user levels, click the Lock button in the device's HMI and set the desired passwords for the different user levels.



NOTICE!

Passwords can only be set locally in an HMI.

A number of stars are displayed in the upper right corner of the HMI; these indicate the current user level. The different user levels and their star indicators are as follows (also, see the image below for the HMI view):

- Super user (***)
- Configurator (**)
- Operator (*)
- User (-)

You can set a new password for a user level by selecting the key icon next to the user level's name. After this you can lock the user level by pressing the **Return** key while the lock is selected. If you need to change the password, you can select the key icon again and give a new password. To remove the password, set the password to "0" (zero). Please note that in order to do this the user level whose password is being changed must be unlocked.

As mentioned above, the access level of the different user levels is indicated by the number of stars. The required access level to change a parameter is indicated with a star (*) symbol if such is required. As a general rule the access levels are divided as follows:

- User: Can view any menus and settings but cannot change any settings, nor operate breakers or other equipment.
- *Operator:* Can view any menus and settings but cannot change any settings BUT can operate breakers and other equipment.
- *Configurator:* Can change most settings such as basic protection pick-up levels or time delays, breaker control functions, signal descriptions etc. and can operate breakers and other equipment.
- Super user: Can change any setting and can operate breakers and other equipment.

NOTICE!

Unlocking and locking a user level generates a time-stamped event to the event log in all AQ 250 series devices.

NOTICE!

Any user level with a password automatically locks itself after half an hour (30 minutes) of inactivity.

4 Functions

4.1 Functions included in AQ-C255

The AQ-C255 capacitor bank protection device includes the following functions as well as the number of stages for those functions. There are four function packages available:

- A: Standard capacitor bank protection functions
- B: Power factor controller for up to five banks
- C: Voltage protection functions and power factor controller for up to five banks
- D: Standard capacitor protection functions and power factor controller for up to 4 banks

	Table. 4.1 - 2. Protection functions of AQ-C255.	
--	--	--

				Function package			
Name (number of stages)	IEC	ANSI	Description	A	В	С	D
CPB (1)	-	-	Capacitor bank module	Х	-	-	Х
COL (2)	lcol> lcol>>	490L	Capacitor bank overload protection	Х	-	-	x
CNU (1)	Cnu>	50UB	Capacitor bank neutral unbalance protection	Х	-	-	х
UCP (1)	luc>	46C	Capacitor bank current unbalance protection	х	-	-	х
NOC (4)	> >> >>> >>>>	50/51	Non-directional overcurrent protection	x	-	-	х
DOC (4)	ldir> ldir>> ldir>>> ldir>>>	67	Directional overcurrent protection	x	-	-	x
NEF (4)	10> 10>> 10>>> 10>>>	50N/51N	Non-directional earth fault protection	x	-	-	x
DEF (4)	IOdir> IOdir>> IOdir>>> IOdir>>>	67N/32N	Directional earth fault protection	x	-	-	x
CUB (4)	2> 2>> 2>>> 2>>>	46/46R/46L	Negative sequence overcurrent/ phase current reversal/ current unbalance protection	x	-	-	x

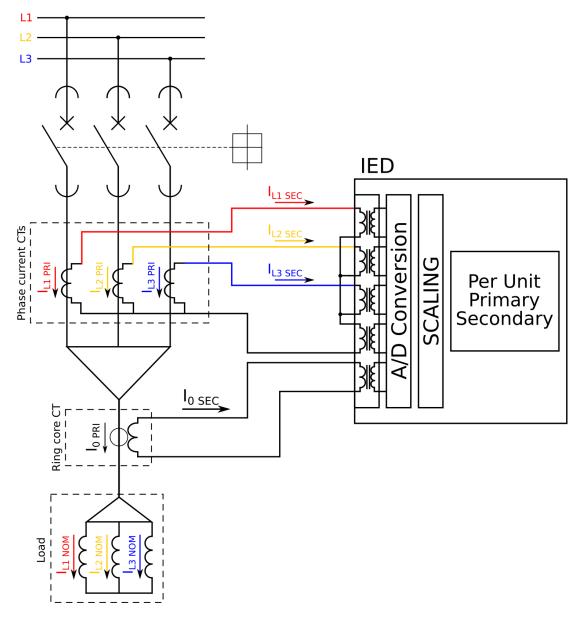
					Function package		
Name (number of stages)	IEC	ANSI	Description	A	В	с	D
HOC (4)	lh> lh>> lh>>> lh>>>	50H/51H/68H	Harmonic overcurrent protection The detection and blocking or tripping based on a selectable harmonic. The phase currents and the residual currents have separate stages.	x	-	-	x
IEF (1)	I0int>	67NT	Intermittent earth fault protection	Х	-	-	Х
CBFP (1)	CBFP	50BF/51BF	Circuit breaker failure protection	Х	-	-	Х
PQS (4)	P, Q, S>/< P, Q, S>>/<< P, Q, S>>>/<< P, Q, S>>>>/<<<	32	Power protection	x	-	-	x
REF (1)	10d>	87N	Low-impedance or high-impedance restricted earth fault/ cable end differential protection	х	-	-	x
OV (4)	U> U>> U>>> U>>>	59	Overvoltage protection	x	-	x	x
UV (4)	U< U<< U<<< U<<<	27	Undervoltage protection	x	-	x	x
NOV (4)	U0> U0>> U0>>> U0>>>	59N	Neutral overvoltage protection	x	-	x	x
VUB (4)	U1/U2>/< U1/U2>>/<< U1/U2>>/<< U1/U2>>>/<< U1/ U2>>>/<<<	59P/27P/47	Sequence voltage protection	x	-	x	x
FRQV (8)	f> f>> f>>> f>>>> f< f<< f<< f<<< f<<<	81O/81U	Overfrequency and underfrequency protection	×	-	-	x
ROCOF (8)	df/dt>/< (18)	81R	Rate-of-change of frequency	Х	-	-	Х
TOLF (1)	TF>	49F	Line thermal overload protection	Х	-	-	Х
RTD (116)	-	-	RTD alarms (Resistance temperature detector)	х	-	-	×

					⁻ uno bacl		
Name (number of stages)	IEC	ANSI	Description	А	В	С	D
PGS (1)	PGx>/<	99	Programmable stage	Х	-	Х	х
ARC (1)	larc>/l0arc>	50Arc/50NArc	Arc fault protection (optional)	Х	-	-	Х

Table. 4.1 - 3. Control functions of AQ-C255.

						ctior kage	
Name	IEC	ANSI	Description	А	В	С	D
SGS	-	-	Setting group selection	Х	Х	Х	Х
ОВЈ	-	-	Object control and monitoring (10 objects available)	x	х	х	х
CIN	-	-	Indicator object monitoring (10 indicators available)	x	x	х	х
CLPU	CLPU	-	Cold load pick-up	Х	-	-	Х
SOTF	SOTF	-	Switch-on-to-fault	Х	-	-	Х
PFC	90PF	-	Power factor controller	-	Х	Х	Х

Table. 4.1 - 4. Monitoring functions of AQ-C255.


Name	IEC	ANSI	Description
CTS	-	-	Current transformer supervision
VTS	-	60	Voltage transformer supervision
DR	-	-	Disturbance recorder
THD	-	-	Current total harmonic distortion
THDV	-	-	Voltage total harmonic distortion
DOS	-	-	Energy dose counter
MREC	-	-	Measurement recorder
VREC	-	-	Measurement value recorder

4.2 Measurements

4.2.1 Current measurement and scaling

The current measurement module (CT module, or CTM) is used for measuring the currents from current transformers. The current measurements are updated every 5 milliseconds. The measured values are processed into the measurement database and they are used by measurement and protection functions. It is essential to understand the concept of current measurements to be able to get correct measurements.

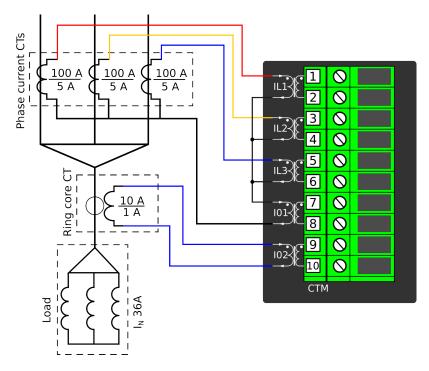
Figure. 4.2.1 - 2. Current measurement terminology.

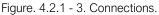
PRI: The primary current, i.e. the current which flows in the primary circuit and through the primary side of the current transformer.

SEC: The secondary current, i.e. the current which the current transformer transforms according to its ratios. This current is measured by the device.

NOM: The nominal primary current of the protected object.

For the measurements to be correct the user needs to ensure that the measurement signals are connected to the correct inputs, that the current direction is connected to the correct polarity, and that the scaling is set according to the nominal values of the current transformer.


The device calculates the scaling factors based on the set values of the CT primary, the CT secondary and the nominal current settings. The device measures the secondary current, the current output from the current transformer installed into application's primary circuit. The rated primary and secondary currents of the CT need to be set for the device to "know" the primary and per-unit values. With motors and other specific electrical apparatus protections, the motor's nominal current should be set for the values to be in per unit with regards to the apparatus nominal instead of the CT nominal. This is not always mandatory as some devices still require manual calculations for the correct settings; however, setting the motors nominal current makes motor protection much easier and more straightforward. In modern protection devices this scaling calculation is done internally after the current transformer's primary current, secondary current and motor nominal current are set.


Normally, the primary current ratings for phase current transformers are 10 A, 12.5 A, 15 A, 20 A, 25 A, 30 A, 40 A, 50 A, 60 A and 75 A as well as their decimal multiples, while the secondary current ratings are 1 A and 5 A. Other, non-standard ratings can be directly connected as the scaling settings are flexible and have large ranges. For example, the ring core current transformer ratings may vary. Ring core current transformers are commonly used for sensitive earth fault protection and their rated secondary current may be as low as 0.2 A in some cases.

The following chapter is an example on how to set the scaling of the current measurements for the selected current transformer and system load.

Example of CT scaling

The following figure presents how CTs are connected to the device's measurement inputs. It also shows example CT ratings and nominal current of the load.

The following table presents the initial data of the connection.

Table. 4.2.1 - 5. Initial data.

Phase current CT:CT primary: 100 ACT secondary: 5 A	Ring core CT in Input I02: • I0CT primary: 10 A • I0CT secondary: 1 A	Load (nominal): 36 A			
 The phase currents are connected to the I01 residual via a Holmgren connection. The starpoint of the phase current CT's secondary current is towards the line. 					

Phase CT scaling

Next, to scale the current to per-unit values, we have to select whether the basis of the phase CT scaling is the protected object's nominal current or the CT primary value.

If the CT values are chosen to be the basis for the per-unit scaling, the option "CT nom. p.u." is selected for the "Scale meas to In" setting (see the image below).

hase CT scaling	
	CT nom p.u. 👻
	100 A 1.00025000.000 [0.001]
	5 A 0.20010.000 [0.001]
	-
	-
	-
	20 0.001.100000.000 [0.001]
	100 0.001100000.000 [0.001]
	5 0.001.100000.000 [0.001]

Figure. 4.2.1 - 4. Setting the phase current transformer scalings to CT nominal.

Once the setting have been sent to the device, device calculates the scaling factors and displays them for the user. The "CT scaling factor P/S" describes the ratio between the primary current and the secondary current. The per-unit scaling factors ("Ipu scaling") for both primary and secondary values are also displayed (in this case they are the set primary and secondary currents of the CT).

If the protected object's nominal current is chosen to be the basis for the per-unit scaling, the option "Object in p.u." is selected for the "Scale meas to In" setting (see the image below).

 Phase CT scaling

 Scale meas to In

 Phase CT primary

 1000.25000.000 (0.000)

 Phase CT secondary

 0.200.10.000 (0.000)

 Phase CT secondary

 0.200.10.000 (0.000)

 Nominal current In

 1.000.25000.000 (0.000)

 IL: Polarity

 IL: Polarity

 IL: Polarity

 ICT scaling factor P/S

 20

 1001.100000.000 (0.000)

 CT scaling factor P/S

 20

 0.001.100000.000 (0.000)

 Ipu scaling primary

 1.001.100000.000 (0.000)

 Ipu scaling secondary

 1.8

 0.001.100000.000 (0.000)

Figure. 4.2.1 - 5. Setting the phase current transformer scalings to the protected object's nominal current.

Once the measurement scaling is tied to the protected object's nominal current, the user must set the appropriate input for the "Nominal current In" setting. One can now see the differences between the two scaling options (CT nominal vs. object nominal). The "CT scaling factor P/S" is the direct ratio between the set CT current values, and the "CT scaling factor NOM" is now the ratio between the set CT primary and the nominal current. The "Ipu scaling primary" is now equal to the set nominal current, and the "Ipu scaling secondary" is the ratio between the nominal current and the "CT scaling factor P/S".

Residual 10 CT scaling

Next, we set the residual IO CT scalings according to how the phase current CTs and the ring core CT are connected to the module (see the Connections image at the beginning of this chapter).

The phase current CTs are connected to the module via a Holmgren (summing) connection, which requires the use of coarse residual current measurement settings: the "I01 CT" settings are set according to the phase current CTs' ratings (100/5 A).

Figure. 4.2.1 - 6. Residual I01 CT scaling (coarse).

	100	
01 I01 Polarity	000025000.00000 [0.00001]	
	5 000010.00000 [0.00001]	
CT cooling factor DIS		
	20 21 . 100000.000 [0.001]	

The ring core CT is connected to the CTM directly, which requires the use of sensitive residual current measurement settings: the "I02 CT" settings are set according to the ring core CT's ratings (10/1 A).

Figure. 4.2.1 - 7. Residual IO2 CT scaling (sensitive).

102 CT primary 10 A 0.20000.25000.00000 [0.000001] 0.20000.25000.00000 [0.000001] 102 CT secondary 1 A 0.00100.10.00000 [0.00001] - 102 Polarity - CT scaling factor PJS 100 0.001_1000000.000 [0.0001] 0.001_1000000.000 [0.0001]	Residual IO2 CT scaling	
0.00100.10.00000 [0.00001] 102 Polarity CT scaling factor P/S 100		
CT scaling factor P/S 100		1 A 0.0010010.00000 [0.00001]
		-

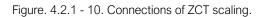
Displaying the scaling

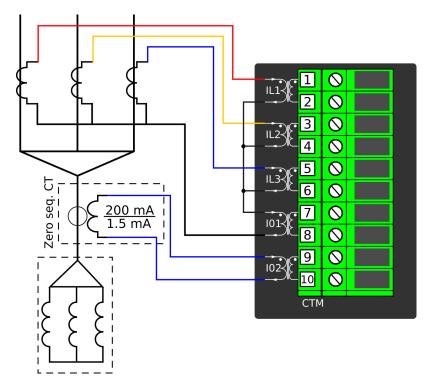
Depending on whether the scaling was done based on the CT primary values or the protected object's nominal current, the measurements are displayed slightly differently. The first of the two images shows how the measurements are displayed when the CT primary values are the basis for the scaling; the second shows them when the protected object's nominal current is the basis for the scaling.

Figure. 4.2.1 - 8. Scalings display (based on the CT nominal).

	Ana	alog Output	s						
Set Mode		Direct	\sim						
V L1-E	0,000 V	0,00 °	50,000 Hz						
V L2-E	0,000 V	-120,00 °	50,000 Hz						
V L3-E	0,000 V	120,00 °	50,000 Hz						
1.11	5,000 A	0,00 °	50,000 Hz						
I L2	5,000 A	-120,00 °	50,000 Hz						
I L3	5,000 A	120,00 °	50,000 Hz						
			,	Secondary	Currents		Per-Unit (Currents	
Primary C				Secondary	Currents		Per-Unit (Currents	
	urrents	5	99.98 4		Currents	5 A		Currents 0 0001250 000 (0 001)	1
Primary C	urrent:	5 100000.00 [0	99.98 4 .01j 99.93 4	Sec.Pha.curr.IL1	0.00. 300.00 [0.01]	5 а			0.999

Figure. 4.2.1 - 9. Scalings display (based on the protected object's nominal current).


	Ar	nalog Outpu	ts			
Set Mode	Direct 🗸					
V L1-E	0,000 V	0,00 *	50,000 Hz			
V L2-E	0,000 V	-120,00 °	50,000 Hz			
V L3-E	0,000 V	120,00 °	50,000 Hz			
1.11	1,800 A	0,00 °	50,000 Hz			
I L2	1,800 A	-120,00 °	50,000 Hz			
I L3	1,800 A	120,00 °	50,000 Hz			


Primary Curro	ents		Secondary C	urrents		Per-Unit C	urrents	
Pri.Pha.curr.IL1	0.00100000.00 (0.01)	35.98 A	Sec.Pha.curr.IL1	0.00300.00 [0.01]	1.8 A		0.0001250.000 (0.001)	0.999 xin
Pri.Pha.curr.IL2	0.00.100000.00[0.01]	35.96 A		0.00.300.00 [0.01]	1.8 A	Pha.curr.IL2	0.000.1250.000 [0.001]	0.999 xtn
Pri.Pha.curr.IL3	0.00100000.00 [0.01]	35.98 A	Sec.Pha.curr.IL3	0.00300.00 [0.01]	1.8 A	Pha.curr.IL3	0.0001250.000 [0.001]	

As the images above show, the scaling selection does not affect how primary and secondary currents are displayed (as actual values). The only effect is that the per-unit system in the device is scaled either to the CT nominal or to the object nominal, making the settings input straightforward.

Example of zero sequence CT scaling

Zero sequence CT scaling (ZCT scaling) is done when a zero sequence CT instead of a ring core CT is part of the measurement connection. In such a case the zero sequence CT should be connected to the I02 channel which has lower CT scaling ranges (see the image below).

Troubleshooting

When the measured current values differ from the expected current values, the following table offers possible solutions for the problems.

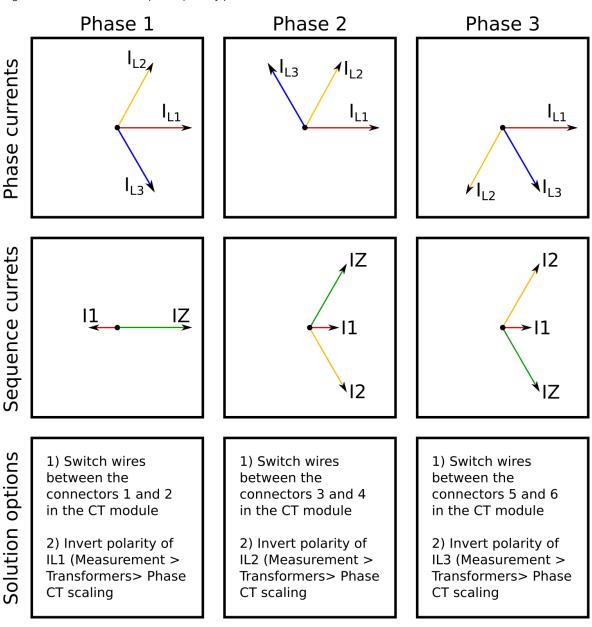
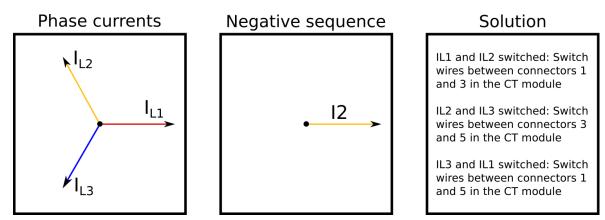
WARNING!

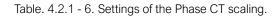
If you work with energized CTs, extreme caution needs to be taken when checking the connections! An opened CT secondary circuit may generate dangerously high voltages. A "buzzing" sound from the connector can indicate an open circuit.

Problem	Solution
The measured current amplitude in all phases does not match the injected current.	The scaling settings may be wrong, check that the settings match with the connected current transformer (<i>Measurement</i> \rightarrow <i>Transformers</i> \rightarrow <i>Phase CT scaling</i>). Also check that the "Scale meas. to In" is set accordingly. If possible, check the actual CTs and their ratings as there may have been a need to change the original plan.
The measured current amplitude does not match one of the measured phases./ The calculated I0 is measured even though it should not.	Check the wiring connections between the injection device or the CTs and the device.

Problem	Solution
The measured current amplitudes are OK but the angles are strange./ The phase unbalance protection trips immediately after activation./ The earth fault protection trips immediately after activation.	The phase currents are connected to the measurement module but the order or polarity of one or all phases is incorrect. In device settings, go to <i>Measurement</i> \rightarrow <i>Phasors</i> and check the "Phase current vectors" diagram. When all connections are correct, the diagram (symmetric feeding) should look like this:

The following image presents the most common problems with phase polarity. Problems with phase polarity are easy to find because the vector diagram points towards the opposite polarity when a phase has been incorrectly connected.


Figure. 4.2.1 - 11. Common phase polarity problems.

The following image presents the most common problems with network rotation (mix phases). These problems can be difficult to find because the measurement result is always the same in the device. If two phases are mixed together, the network rotation always follows the pattern IL1-IL3-IL2 and the measured negative sequence current is therefore always 1.00 (in. p.u.).

Figure. 4.2.1 - 12. Common network rotation (mixed phases) problems.

Settings

Name	Range	Step	Default	Description
Scale measurement to In	 CT nom p.u. Object In p.u. 	-	• CT nom p.u.	The selection of the reference used in the device's per- unit system scaling. Either the set phase current CT primary or the protected object's nominal current.
Phase CT primary	1.00025 000.000A	0.001	100.000	The rated primary current of the current transformer.
Phase CT secondary	0.20010.000A	0.001	5.000	The rated secondary current of the current transformer.
Nominal current	1.00025 000.000A	0.001	100.000	The nominal current of the protected object. This setting is only visible if the option "Object In p.u." has been selected in the "Scale measurement to In" setting.
IL1 Polarity	• - • Invert	-	-	The selection of the first current measurement channel's (IL1) polarity (direction). The default setting is for the positive current to flow from connector 1 to connector 2, with the secondary currents' starpoint pointing towards the line.
IL2 Polarity	• - • Invert	-	-	The selection of the second current measurement channel's (IL2) polarity (direction). The default setting is for the positive current to flow from connector 3 to connector 4, with the secondary currents' starpoint pointing towards the line.
IL3 Polarity	• - • Invert	-	-	The selection of the third current measurement channel's (IL3) polarity (direction). The default setting is for the positive current to flow from connector 5 to connector 6, with the secondary currents' starpoint pointing towards the line.
CT scaling factor P/S	-	-	-	A feedback value; the calculated scaling factor that is the ratio between the primary current and the secondary current.

Name	Range	Step	Default	Description
CT scaling factor NOM	-	-	-	A feedback value; the calculated scaling factor that is the ratio between the set primary current and the set nominal current. This parameter is only visible if the option "Object In p.u." has been selected in the "Scale measurement to In" setting.
lpu scaling primary	-	-	-	A feedback value; the scaling factor for the primary current's per-unit value.
lpu scaling secondary	-	-	-	A feedback value; the scaling factor for the secondary current's per-unit value.

Table. 4.2.1 - 7. Settings of the Residual I01 CT scaling.

Name	Unit	Range	Step	Default	Description
I01 CT primary	A	0.200 0025 000.000 00	0.000 01	100.000 00	The rated primary current of the current transformer.
I01 CT secondary	A	0.100 0010.000 00	0.000 01	1.000 00	The rated secondary current of the current transformer.
l01 Polarity	-	• - • Invert	-	-	The selection of the coarse residual measurement channel's (I01) polarity (direction). The default setting is for the positive current to flow from connector 7 to connector 8.
CT scaling factor P/S	-	-	-	-	A feedback value; the calculated scaling factor that is the ratio between the primary current and the secondary current.

Table. 4.2.1 - 8. Settings of the Residual IO2 CT scaling.

Name	Unit	Range	Step	Default	Description
I02 CT primary	A	0.200 0025 000.000 00	0.000 01	100.000 00	The rated primary current of the current transformer.
I02 CT secondary	A	0.001 0010.000 00	0.000 01	0.200 00	The rated secondary current of the current transformer.
I02 Polarity	-	• - • Invert	-	_	The selection of the sensitive residual measurement channel's (102) polarity (direction). The default setting is for the positive current to flow from connector 9 to connector 10.
CT scaling factor P/S	-	-	-	-	A feedback value; the calculated scaling factor that is the ratio between the primary current and the secondary current.

Measurements

The following measurements are available in the measured current channels.

Table. 4.2.1 - 9. Per-unit phase current measurements.

Name	Unit	Range	Step	Description
Phase current ILx ("Pha.curr.ILx")	× In	0.0001 250.000	0.001	The current fundamental frequency component (in p.u.) from each of the phase current channels.
Phase current ILx TRMS ("Pha.curr.ILx TRMS")	× In	0.001 250.00	0.01	The TRMS current (inc. harmonics up to 31 st) measurement (in p.u.) from each of the phase current channels.
Peak-to-peak current ILx ("P-P curr.ILx")	× In	0.00500.00	0.01	The peak-to-peak current measurement (in p.u.) from each of the phase current channels.

Table. 4.2.1 - 10. Primary phase current measurements.

Name	Unit	Range	Step	Description
Primary phase current ILx ("Pri.Pha.curr.ILx")	A	0.001 000 000.00	0.01	The primary current measurement fundamental frequency component from each of the phase current channels.
Primary phase current ILx TRMS ("Pha.curr.ILx TRMS Pri")	A	0.001 000 000.00	0.01	The primary TRMS current (inc. harmonics up to 31 st) measurement from each of the phase current channels.

Table. 4.2.1 - 11. Secondary phase current measurements.

Name	Unit	Range	Step	Description
Secondary phase current ILx ("Sec.Pha.curr.ILx")	A	0.00300.00	0.01	The primary current measurement fundamental frequency component from each of the phase current channels.
Secondary phase current ILx TRMS ("Pha.curr.ILx TRMS Sec")	A	0.00300.00	0.01	The primary TRMS current (inc. harmonics up to 31 st) measurement from each of the phase current channels.

Table. 4.2.1 - 12. Phase angle measurements.

Name	Unit	Range	Step	Description
Phase angle ILx ("Pha.angle ILx")	deg	0.00360.00	0.01	The phase angle measurement from each of the three phase current inputs.

Table. 4.2.1 - 13. Per-unit residual current measurements.

Name	Unit	Range	Step	Description
Residual current I0x ("Res.curr.I0x")	× In	0.001 250.00	0.01	The current measurement fundamental frequency component (in p.u.) from the residual current channel I01 or I02.
Calculated I0	× In	0.001 250.00	0.01	The current measurement fundamental frequency component (in p.u.) from the calculated I0 current channel.
Phase current I0x TRMS ("Res.curr.I0x TRMS")	× In	0.001 250.00	0.01	The TRMS current (inc. harmonics up to 31 st) measurement (in p.u.) from the residual current channel 101 or 102.
Peak-to-peak current I0x ("P-P curr.I0x")	× In	0.00500.00	0.01	The peak-to-peak current measurement (in p.u.) from the residual current channel I01 or I02.

Table. 4.2.1 - 14. Primary residual current measurements.

Name	Unit	Range	Step	Description
Primary residual current I0x ("Pri.Res.curr.I0x")	A	0.001 000 000.00	0.01	The primary current measurement fundamental frequency component from the residual current channel I01 or I02.
Primary calculated I0 ("Pri.calc.I0")	A	0.001 000 000.00	0.01	The primary current measurement fundamental frequency component from the calculated current channel IO.
Primary residual current I0x TRMS ("Res.curr.I0x TRMS Pri")	A	0.001 000 000.00	0.01	The TRMS current (inc. harmonics up to 31 st) measurement from the primary residual current channel I01 or I02.

Table. 4.2.1 - 15. Secondary residual current measurements.

Name	Unit	Range	Step	Description
Secondary residual current I0x ("Sec.Res.curr.I0x")	A	0.00300.00	0.01	The secondary current measurement fundamental frequency component from the residual current channel I01 or I02.
Secondary calculated I0 ("Sec.calc.I0")	A	0.00300.00	0.01	The secondary current measurement fundamental frequency component from the calculated current channel IO.
Secondary residual current I0x TRMS (Res.curr.I0x TRMS Sec")	A	0.00300.00	0.01	The secondary TRMS current (inc. harmonics up to 31 st) measurement from the secondary residual current channel I01 or I02.

Table. 4.2.1 - 16. F	Residual phase angle measurements.
----------------------	------------------------------------

Name	Unit	Range	Step	Description
Residual current angle I0x ("Res.curr.angle I0x")	deg	0.00360.00	0.01	The residual current angle measurement from the I01 or I02 current input.
calc.10 Pha.angle	deg	0.00360.00	0.01	The calculated residual current angle measurement.

Table. 4.2.1 - 17. Per-unit sequence current measurements.

Name	Unit	Range	Step	Description
Positive sequence current	× In	0.001 250.00	0.01	The measurement (in p.u.) from the calculated positive sequence current.
Negative sequence current	× In	0.001 250.00	0.01	The measurement (in p.u.) from the calculated negative sequence current.
Zero sequence current	× In	0.001 250.00	0.01	The measurement (in p.u.) from the calculated zero sequence current.

Table. 4.2.1 - 18. Primary sequence current measurements.

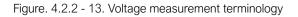
Name	Unit	Range	Step	Description
Primary positive sequence current ("Pri.Positivesequence curr.")	A	0.001 000 000.00	0.01	The primary measurement from the calculated positive sequence current.
Primary negative sequence current ("Pri.Negative sequence curr.")	А	0.001 000 000.00	0.01	The primary measurement from the calculated negative sequence current.
Primary zero sequence current ("Pri.Zero sequence curr.")	A	0.001 000 000.00	0.01	The primary measurement from the calculated zero sequence current.

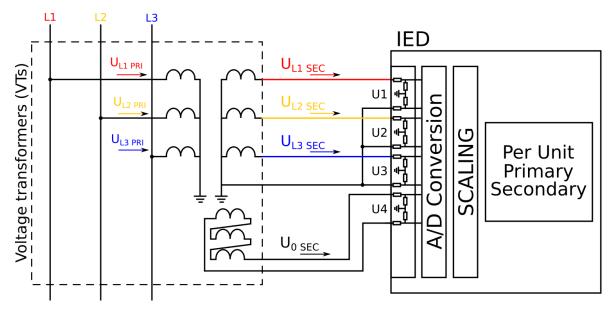
Table. 4.2.1 - 19. Secondary sequence current measurements.

Name	Unit	Range	Step	Description
Secondary positive sequence current ("Sec.Positive sequence curr.")	A	0.00300.00	0.01	The secondary measurement from the calculated positive sequence current.
Secondary negative sequence current ("Sec.Negative sequence curr")	A	0.00300.00	0.01	The secondary measurement from the calculated negative sequence current.

Name	Unit	Range	Step	Description
Secondary zero sequence current ("Sec.Zero sequence curr.")	A	0.00300.00	0.01	The secondary measurement from the calculated zero sequence current.

Table. 4.2.1 - 20. Sequence phase angle measurements.


Name	Unit	Range	Step	Description
Positive sequence current angle ("Positive sequence curr.angle")	deg	0.00360.00	0.01	The calculated positive sequence current angle.
Negative sequence current angle ("Negative sequence curr.angle")	deg	0.00360.00	0.01	The calculated negative sequence current angle.
Zero sequence current angle ("Zero sequence curr.angle")	deg	0.00360.00	0.01	The calculated zero sequence current angle.


Table. 4.2.1 - 21. Harmonic current measurements.

Name		Range	Step	Description
Harmonics calculation values ("Harm Abs.or Perc.")	-	PercentAbsolute	-	Defines whether the harmonics are calculated as percentage or absolute values.
Harmonics display	-	 Per unit Primary A Secondary A 	-	Defines how the harmonics are displayed: in p.u values, as primary current values, or as secondary current values.
Maximum harmonics value ("Ixx maximum harmonic")	A	0.00100 000.00	0.01	Displays the maximum harmonics value of the selected current input ILx or I0x.
Fundamental frequency ("lxx fundamental")	A	0.00100 000.00	0.01	Displays the current value of the fundamental frequency component (RMS) from the selected current input ILx or I0x.
lxx harmonics (2 nd 31 st harmonic)	A	0.00100 000.00	0.01	Displays the selected harmonic from the current input ILx or I0x.
Ixx Amplitude THD	%	0.000100.000	0.001	Amplitude ratio THD voltage. Recognized by IEC.
Ixx Power THD	%	0.000100.000	0.001	Power ratio THD voltage. Recognized by the IEEE.

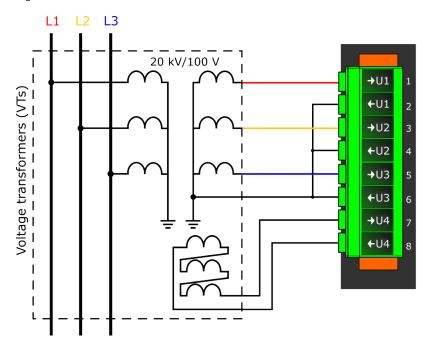
4.2.2 Voltage measurement and scaling

The voltage measurement module (VT module, or VTM) is used for measuring the voltages from voltage transformers. The voltage measurements are updated every 5 milliseconds. The measured values are processed into the measurement database and they are used by measurement and protection functions. It is essential to understand the concept of voltage measurements to be able to get correct measurements.

PRI: The primary voltage, i.e. the voltage in the primary circuit which is connected to the primary side of the voltage transformer.

SEC: The secondary voltage, i.e. the voltage which the voltage transformer transforms according to the ratio. This voltage is measured by the device.

For the measurements to be correct the user needs to ensure that the measurement signals are connected to the correct inputs, that the voltage direction correct, and that the scaling is set correctly.


The device calculates the scaling factors based on the set VT primary, and secondary voltage values. The device measures secondary voltages, which are the voltage outputs from the VT installed into the application's primary circuit. The voltage can be measured directly from the system as well (up to 400 V nominal line to neutral voltage). When connecting voltage directly, measuring mode must be set to 3LN+U4 mode. The rated primary and secondary voltages of the VT need to be set for the device to "know" the primary and per-unit values. In modern protection devices this scaling calculation is done internally after the voltage transformer's primary and secondary voltages are set.

Normally, the primary line-to-line voltage rating for VTs is 400 V...60 kV, while the secondary voltage ratings are 100 V...210 V. Non-standard ratings can also be directly connected as the scaling settings are flexible and have large ranges.

Example of VT scaling

The following figure presents how VTs are connected to the device's measurement inputs. It also shows the VT ratings. In the figure below, three line-to-neutral voltages are connected along with the zero sequence voltage; therefore, the 3LN+U4 mode must be selected and the U4 channel must be set as U0. Other possible connections are presented later in this chapter.

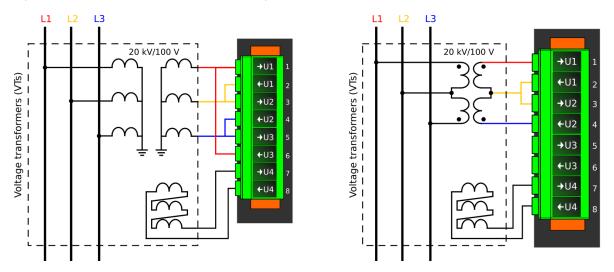
Figure. 4.2.2 - 14. Connections.

The following table presents the initial data of the connection.

Table. 4.2.2 - 22. Initial data.

Phase voltage VT	Zero sequence voltage VT
- VT primary: 20 000 V	- U4 VT primary: 20 000 V
- VT secondary: 100 V	- U4 VT secondary: 100 V

- the zero sequence voltage is connected similarly to line-to-neutral voltages (+U0).

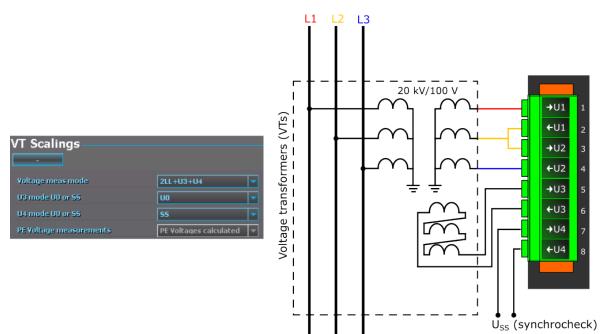

- in case wiring is incorrect, all polarities can be individually switched by 180 degrees in the device.

Once the settings have been sent to the device, device calculates the scaling factors and displays them for the user. The "VT scaling factor P/S" describes the ratio between the primary voltage and the secondary voltage. The per-unit scaling factors ("VT scaling factor p.u.") for both primary and secondary values are also displayed.

There are several different ways to use all four voltage channels. The voltage measurement modes are the following:

- 3LN+U4 (three line-to-neutral voltages and U4 can be used for either zero sequence voltage or synchrochecking)
- 3LL+U4 (three line-to-line voltages and U4 can be used either for zero sequence voltage or synchrochecking)
- 2LL+U3+U4 (two line-to-line voltages and the U3 and the U4 channels can be used for synchrochecking, zero sequence voltage, or for both)

The 3LN+U0 is the most common voltage measurement mode. See below for example connections of voltage line-to-line measurement (3LL on the left, 2LL on the right).



If only two line-to-line voltages are measured, the third one (U_{L31}) is calculated based on the U_{L12} and U_{L23} vectors. When measuring line-to-line voltages, the line-to-neutral voltages can also be calculated as long as the value of U0 is measured.

The voltage measurement channel U4 can be used to measure the zero sequence voltage (U0), the side 2 voltage of the circuit breaker (Synchrocheck), or for automatic voltage regulator function. If the 2LL+U3+U4 mode is selected, the third channel (U3) can be used for this purpose. Please note that U0 can only be measured by using a single channel.

In the image below is an example of 2LL+U0+SS, that is, two line-to-line measurements with the zero sequence voltage and voltage from side 2 for Synchrocheck. Since U0 is available, line-to-neutral voltages can be calculated.

Figure. 4.2.2 - 16. 2LL+U0+SS settings and connections.

The image collection below presents the device's behavior when nominal voltage is injected into the device via secondary test equipment. The measurement mode is 3LN+U4 which means that the device is measuring line-to-neutral voltages. The VT scaling has been set to 20 000 : 100 V. The U4 channel measures the zero sequence voltage which has the same ratio (20 000 : 100 V).

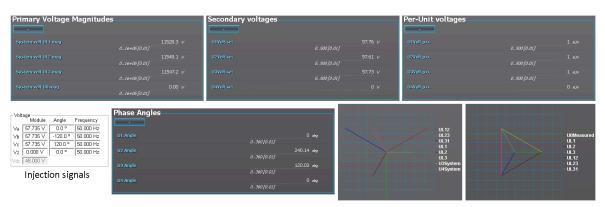
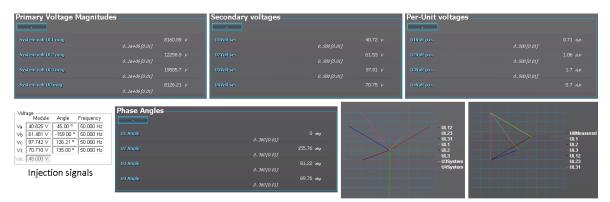



Figure. 4.2.2 - 17. Measurement behavior when nominal voltage injected.

The image collection below presents the device's behavior when voltage is injected into the device via secondary test equipment during an earth fault. The measurement mode is 3LN+U4 which means that the device is measuring line-to-neutral voltages. The VT scaling has been set to 20 000 : 100 V. The U4 channel measures the zero sequence voltage which has the same ratio (20 000 : 100 V).

Figure. 4.2.2 - 18. Device behavior when voltage injected during an earth fault.

Troubleshooting

When the measured voltage values differ from the expected voltage values, the following table offers possible solutions for the problems.

Problem	Check / Resolution
The measured voltage amplitude in all phases does not match the injected voltage.	The scaling settings or the voltage measurement mode may be wrong, check that the settings match with the connected voltage transformer (<i>Measurement</i> \rightarrow <i>Transformers</i> \rightarrow <i>VT Module</i>).
The measured voltage amplitude does not match one of the measured phases./ The calculated U0 is measured even though it should not.	Check the wiring connections between the injection device or the VTs and the device.

Problem	Check / Resolution
The measured voltage amplitudes are OK but the angles are strange./ The voltage unbalance protection trips immediately after activation./ The earth fault protection trips immediately after it is activated and voltage calculated.	The voltages are connected to the measurement module but the order or polarity of one or all phases is incorrect. In device settings, go to <i>Measurement</i> \rightarrow <i>Phasors</i> and check the "System voltage vectors" diagram. When all connections are correct, the diagram (symmetric feeding) should look like this: UL12 UL12 UL23 UL3 UL3 UL3 UL3 UL3 UL3 UL3 UL

Alternative

Settings

Table. 4.2.2 - 23. Settings of the VT scaling.

Name	Range	Step	Default	Description
Voltage measurement mode	 3LN+U4 3LL+U4 2LL+U3+U4 	-	3LN+U4	The device's voltage wiring method. The voltages are scaled according the set voltage measurement mode.
U3 mode U0 or SS	 Not Used U0 SS 	_	Not Used	The voltage channel U3 can be used to measure zero sequence voltage (U0) or the Synchrocheck voltage (SS). If neither is needed, the (default) option "Not Used" should be active. This setting is only valid if the "2LL+U3+U4" mode is selected.
U4 mode U0 or SS				The voltage channel U4 can be used to measure zero sequence voltage (U0) or the Synchrocheck voltage (SS). If neither is needed, the (default) option "Not Used" should be active.
U0 (U3) Measured from	 Broken Delta Neutral point Open delta 	-	Broken delta	Defines how the secondary voltage is scaled to the primary. "Broken Delta" is the most common mode. Does not affect how protection operates, it only affects the displayed primary voltages. This parameter is visible when the "U4 mode U0 or SS" has been set to the "U0" mode. Example with scaling 20000/100 for Uo and injection 10V secondary: Broken delta: 1155V (10%) Neutral point: 2000 V (17.34%) Open delta: 667V (5.78%)

Name	Range	Step	Default	Description
U0 (U4) Measured from				 Defines how the secondary voltage is scaled to the primary. "Broken Delta" is the most common mode. Does not affect how protection operates, it only affects the displayed primary voltages. This parameter is visible when the "U4 mode U0 or SS" has been set to the "U0" mode. Example with scaling 20000/100 for Uo and injection 10V secondary: Broken delta: 1155V (10%) Neutral point: 2000 V (17.34%) Open delta: 667V (5.78%)
Voltage memory	DisabledActivated	-	Disabled	Activates the voltage memory. The "Voltage memory" chapter describes the function in more detail.
P-E Voltage measurements	 No P-E voltages available P-E Voltages calculated P-E Voltages measured 	-	-	Indicates whether or not phase-to-earth voltages are available. Also indicates whether P-E voltages are measured from the voltage channels directly or if they are calculated from measured line-to-line and zero sequence voltages.
VT primary	1.01 000 000.0V	0.1V	20 000.0V	The rated primary voltage of the voltage transformer.
VT secondary	0.2400.0V	0.1V	100.0V	The rated secondary voltage of the voltage transformer.
U3 Res/SS VT primary	1.01 000 000V	0.1V	20 000.0V	The primary nominal voltage of the connected U0 or SS VT. This setting is only valid if the "2LL+U3+U4" mode is selected.
U3 Res/SS VT secondary	0.2400.0V	0.1V	100.0V	The secondary nominal voltage of the connected U0 or SS VT. This setting is only valid if the "2LL+U3+U4" mode is selected.
U4 Res/SS VT primary	1.01 000 000.0V	0.1V	20 000.0V	The primary nominal voltage of the connected U0 or SS VT.
U4 Res/SS VT secondary	0.2400.0V	0.1V	100.0V	The secondary nominal voltage of the connected U0 or SS VT.
U1 Polarity				The selection of the first voltage measurement channel's (U1) polarity (direction). The default setting is for the positive voltage to flow from connector 1 to connector 2, with the secondary voltage's starpoint pointing towards the line.
U2 Polarity	• - • Invert	-	-	The selection of the second voltage measurement channel's (U2) polarity (direction). The default setting is for the positive voltage to flow from connector 3 to connector 4, with the secondary voltage's starpoint pointing towards the line.
U3 Polarity				The selection of the third voltage measurement channel's (U3) polarity (direction). The default setting is for the positive voltage to flow from connector 5 to connector 6, with the secondary voltage's starpoint pointing towards the line.

Name	Range	Step	Default	Description
U4 Polarity				The selection of the fourth voltage measurement channel's (U4) polarity (direction). The default setting is for the positive voltage to flow from connector 7 to connector 8, with the secondary voltage's starpoint pointing towards the line.

Table. 4.2.2 - 24. Read-only parameters of the VT scaling.

Name	Description
VT scaling factor P/S	A feedback value; the calculated scaling factor that is the ratio between the primary voltage and the secondary voltage.
VT scaling factor p.u. Pri	A feedback value; the scaling factor for the primary voltage's per-unit value.
VT scaling factor p.u. Sec	A feedback value; the scaling factor for the secondary voltage's per-unit value.
U3 VT scaling factor P/S U0/ SS	A feedback value; the scaling factor that is the ratio between the U3 channel's primary and secondary voltages. This setting is only valid if the "2LL+U3+U4" mode is selected.
U3 scaling factor p.u. Pri	A feedback value for channel U3; the scaling factor for the primary voltage's per-unit value. This setting is only valid if the "2LL+U3+U4" mode is selected.
U3 scaling factor p.u. Sec	A feedback value for channel U3; the scaling factor for the secondary voltage's per-unit value. This setting is only valid if the "2LL+U3+U4" mode is selected.
U4 VT scaling factor P/S U0/ SS	A feedback value; the scaling factor that is the ration between the U4 channel's primary and secondary voltages. This setting is only valid is the "2LL+U3+U4" mode is selected.
U4 scaling factor p.u. Pri	A feedback value for channel U4; the scaling factor for the primary voltage's per-unit value. This setting is only valid if the "2LL+U3+U4" mode is selected.
U4 scaling factor p.u. Sec	A feedback value for channel U4; the scaling factor for the secondary voltage's per-unit value. This setting is only valid if the "2LL+U3+U4" mode is selected.

Measurements

The following measurements are available in the measured voltage channels.

Table.	4.2.2 -	25.	Per-unit	voltage	measurements.
rubic.	1.2.2	20.	i oi uint	vonuge	mousurements.

Name	Range	Step	Description
Voltage Ux ("UxVolt p.u.")	0.00500.00xU _N	0.01xU _N	The voltage measurement fundamental frequency component (in p.u.) from each of the voltage channels.
Voltage Ux TRMS ("UxVolt TRMS p.u.")	0.00500.00xU _N	0.01xU _N	The TRMS voltage (inc. harmonics up to 31 st) measurement (in p.u.) from each of the voltage channels.

Table. 4.2.2 - 26. Secondary voltage measurements.

Name	Range	Step	Description
Secondary voltage Ux ("Ux Volt sec")	0.00500.00V	0.01V	The secondary voltage measurement fundamental frequency component from each of the voltage channels.
Secondary voltage Ux TRMS ("UxVolt TRMS sec")	0.00500.00V	0.01V	The secondary TRMS voltage (inc. harmonics up to 31 st) measurement from each of the voltage channels.

Table. 4.2.2 - 27. Voltage phase angle measurements.

Name	Range	Step	Description
Ux Angle	0.00360.00°	0.01°	The phase angle measurement from each of the four voltage inputs.

Table. 4.2.2 - 28. Per-unit sequence voltage measurements.

Name	Range	Step	Description
Positive sequence voltage ("Pos.seq.Volt.p.u.")	0.00500.00×U _N	0.01xU _N	The measurement (in p.u.) from the calculated positive sequence voltage.
Negative sequence voltage ("Neg.seq.Volt.p.u.")	0.00500.00xU _N	0.01xU _N	The measurement (in p.u.) from the calculated negative sequence voltage.
Zero sequence voltage ("Zero.seq.Volt.p.u.")	0.00500.00xU _N	0.01xU _N	The measurement (in p.u.) from the calculated zero sequence voltage.

Table. 4.2.2 - 29. Primary sequence voltage measurements.

Name	Range	Step	Description
Primary positive sequence voltage ("Pos.seq.Volt.pri")	0.001 000 000.00V	0.01V	The primary measurement from the calculated positive sequence voltage.
Primary negative sequence voltage ("Neg.seq.Volt.pri")	0.001 000 000.00V	0.01V	The primary measurement from the calculated negative sequence voltage.
Primary zero sequence voltage ("Zero.seq.Volt.pri")	0.001 000 000.00V	0.01V	The primary measurement from the calculated zero sequence voltage.

Table. 4.2.2 - 30. Secondary sequence voltage measurements.

Name	Range	Step	Description
Secondary positive sequence voltage ("Pos.seq.Volt.sec")	0.004 800.00V	0.01V	The secondary measurement from the calculated positive sequence voltage.
Secondary negative sequence voltage ("Neg.seq.Volt.sec")	0.004 800.00V	0.01V	The secondary measurement from the calculated negative sequence voltage.
Secondary zero sequence voltage ("Zero.seq.Volt.sec")	0.004 800.00V	0.01V	The secondary measurement from the calculated zero sequence voltage.

Table. 4.2.2 - 31. Sequence voltage angle measurements.

Name	Range	Step	Description
Positive sequence voltage angle ("Pos.seq.Volt.Angle")	0.00360.00°	0.01°	The calculated positive sequence voltage angle.
Negative sequence voltage angle ("Neg.seq.Volt.Angle")	0.00360.00°	0.01°	The calculated negative sequence voltage angle.
Zero sequence voltage angle ("Zero.seq.Volt.Angle")	0.00360.00°	0.01°	The calculated zero sequence voltage angle.

Table. 4.2.2 - 32. System primary voltage measurements.

Name	Range	Step	Description
System voltage magnitude UL12 ("System volt UL12 mag")	0.001 000 000.00V	0.01V	The primary line-to-line UL12 voltage fundamental frequency component (measured or calculated). You can also select the row where the unit for this is kV.
System voltage magnitude UL23 ("System volt UL23 mag")	0.001 000 000.00V	0.01V	The primary line-to-line UL23 voltage fundamental frequency component (measured or calculated). You can also select the row where the unit for this is kV.
System voltage magnitude UL31 ("System volt UL31 mag")	0.001 000 000.00V	0.01V	The primary line-to-line UL31 voltage fundamental frequency component (measured or calculated). You can also select the row where the unit for this is kV.

Name	Range	Step	Description	
System voltage magnitude UL1 ("System volt UL1 mag")	0.001 000 000.00V	0.01V	The primary line-to-neutral UL1 voltage fundamental frequency component (measured or calculated). You can also select the row where the unit for this is kV.	
System voltage magnitude UL2 ("System volt UL2 mag")	0.001 000 000.00V	0.01V	The primary line-to-neutral UL2 voltage fundamental frequency component (measured or calculated). You can also select the row where the unit for this is kV.	
System voltage magnitude UL3 ("System volt UL3 mag")	0.001 000 000.00V	0.01V	The primary line-to-neutral UL3 voltage fundamental frequency component (measured or calculated). You can also select the row where the unit for this is kV.	
System voltage magnitude U0 ("System volt U0 mag")	0.001 000 000.00V	0.01V	The primary zero sequence U0 voltage fundamental frequency component (measured or calculated). You can also select the row where the unit for this is kV. There is also a row where the unit is %.	
System voltage magnitude U3 ("System volt U3 mag")	0.001 000 000.00V	0.01V	The primary measured Synchrocheck voltage fundamental frequency component (SS). This magnitude is displayed only when the "2LL+U3+U4" mode is selected and both U3 and U4 are in use. You can also select the row where the unit for this is kV.	
System voltage magnitude U4 ("System volt U4 mag")	0.001 000 000.00V	0.01V	The primary measured Synchrocheck voltage fundamental frequency component (SS). This magnitude is displayed only when the "2LL+U3+U4" mode is selected and both U3 and U4 are in use. You can also select the row where the unit for this is kV.	

Table. 4.2.2 - 33. Primary system voltage angles.

Name	Range	Step	Description
System voltage angle UL12 ("System volt UL12 ang")	0.00360.00°	0.01°	The primary line-to-line angle UL12 (measured or calculated).

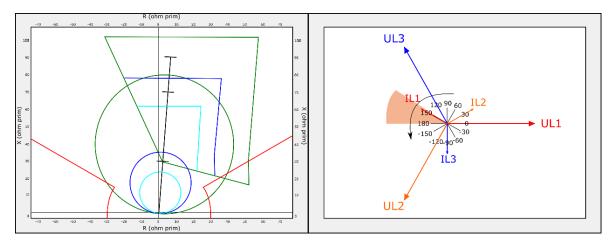
Name	Range	Step	Description
System voltage angle UL23 ("System volt UL23 ang")	0.00360.00°	0.01°	The primary line-to-line angle UL23 (measured or calculated).
System voltage angle UL31 ("System volt UL31 ang")	0.00360.00°	0.01°	The primary line-to-line angle UL23 (measured or calculated).
System voltage angle UL1 ("System volt UL1 ang")	0.00360.00°	0.01°	The primary line-to-neutral angle UL1 (measured or calculated).
System voltage angle UL2 ("System volt UL2 ang")	0.00360.00°	0.01°	The primary line-to-neutral angle UL2 (measured or calculated).
System voltage angle UL3 ("System volt UL3 ang")	0.00360.00°	0.01°	The primary line-to-neutral angle UL3 (measured or calculated).
System voltage angle U0 ("System volt U0 ang")	0.00360.00°	0.01°	The primary zero sequence angle U0 (measured or calculated).
System voltage angle U3 ("System volt U3 ang")	0.00360.00°	0.01°	The primary measured Synchrocheck angle SS. This magnitude is only valid when the "2LL+U3+U4" mode is selected and both U3 and U4 are in use.
System voltage angle U4 ("System volt U4 ang")	0.00360.00°	0.01°	The primary measured Synchrocheck angle SS. This magnitude is displayed only when the "2LL+U3+U4" mode is selected and both U3 and U4 are in use.

Table. 4.2.2 - 34. Harmonic voltage measurements.

Name	Range	Step	Description
Harmonics calculation values ("Harm Abs.or Perc.")	PercentAbsolute	-	Defines whether the harmonics are calculated as percentages or absolute values.
Harmonics display	Per unitPrimary VSecondary V	-	Defines how the harmonics are displayed: in p.u. values, as primary voltage values, or as secondary voltage values.
Maximum harmonics value ("UxMaxH")	0.00100 000.00V	0.01V	Displays the maximum harmonics value of the selected voltage input Ux.
Fundamental frequency ("Ux Fund")	0.00100 000.00V	0.01V	Displays the voltage value of the fundamental frequency component of the selected voltage input Ux.
Ux harmonics (2 nd 31 st harmonic)	0.00100 000.00V	0.01V	Displays the selected harmonic from the voltage input Ux.
Ux Amplitude THD	0.000100.000V	0.001V	Amplitude ratio THD voltage. Recognized by IEC.
Ux Power THD	0.000100.000V	0.001V	Power ratio THD voltage. Recognized by the IEEE.

Voltage memory

Certain protection functions (such as impedance or directional overcurrent) use the device's measured current and voltage to determine whether the electrical network fault appears to be inside the protected area. The determination is made by comparing the angle between the operating quantity (zone/tripping area) and the actual measured quantity. The function then produces an output when the required terms are met.


In close-in faults the system voltage on the secondary side may fall down to a few volts or close to nothing. In such cases, when the measured voltage is absent, the fault direction cannot be solved. As backup, non-directional protection can be used for tripping, but in such cases the selectivity of the network will reduce. However, an angle memory for voltage can be used to prevent this from happening. An adjustable voltage level with pre-fault voltage angles can be used as a reference for fault direction and/or distance. The reference can be set manually for duration. Thanks to the configurable voltage memory even time-delayed backup tripping can be initiated.

The user can activate voltage memory (and find all related settings) by following this path in device settings: *Measurement* \rightarrow *Transformers* \rightarrow *VT Module* (*3U/4U*) 1 \rightarrow *Voltage memory* ("Activated"/"Disabled").

The activation of voltage memory depends of following criteria:

- 1. All used line-to-line or line-to-neutral voltages need to be below the set value for the "VMEM activation voltage" parameter.
- 2. At least one phase current must be above the set value for the "Measured current condition 3I>" parameter. This setting limit is <u>optional</u>.

Voltage memory activates when the above-mentioned criteria are met. Voltage memory uses the "VMEM activation voltage" parameter as voltage amplitude even when the actual measured voltage has decreased below it or close to zero. The angle used by this function is the one captured the moment before the fault occurred and voltage memory was activated. When voltage memory is activated, the output "Voltage memory on" signal is activated. This signal can be found in the device's I/O matrix.

While voltage memory is active, voltages are absent and therefore angle measurement is not possible. Healthy state angles (before a fault) are used during a fault. This is why a drift between the assumed voltage angle and the actual measured phase current angle takes place. While voltage memory is used, the angle of phase currents drifts approximately one degree for each passing second (see the graph below).

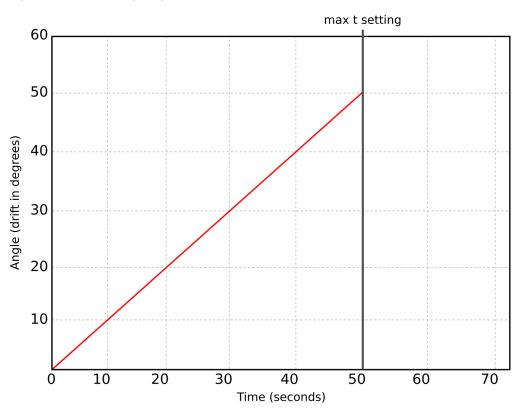


Figure. 4.2.2 - 20. Voltage angle drift.

The blocking signal for voltage memory can be found among other stage-related settings in the tab *VT Module (3U/4U) 1.* The blocking signal is checked in the beginning of each program cycle.

VMEM activation voltage and Measured current condition 3I>

When the voltage memory function is enabled, it activates when all line voltages drop below the "VMEM activation voltage" threshold limit. This limit can be set to be anything between 2...50 V AC. When "Measured current condition 3I>" is used, activation cannot be based on just the voltage. Therefore, at least one of the three-phase currents must also rise above the set current pick-up setting.

VMEM max active time

Voltage memory can be active for a specific period of time, set in "VMAX active time". It can be anything between 0.02...50.00 seconds. The function supports the definite time (DT) delay type. It depends on the application for how long the memory should be used. During massive bolted faults, the fault should be cleared and the breaker opened as soon as possible; therefore, a short operating time for voltage memory is usually applied. A typical delay for voltage memory is between 0.5...1.0 s. When the operating time passes and voltage memory is no longer used, directional overcurrent and/or distance protection goes to the unidirectional mode to secure a safe tripping. The memory uses longer operating times when a backup protection is applied (e.g. in distance-protection zones are farther away).

Forced CT f tracking on VMEM

While fixed frequency tracking is used, all protection stage-based sampling (apart from frequency protection) is based on a set fixed frequency such as 50 Hz or 60 Hz. When the frequency drops massively during a fault while angle memory is in use, it is also possible that the frequency of the system starts to fluctuate. In such cases, if current sampling of used protection stages is based on 50/ 60 Hz, there could be an error in current magnitude and in angle measurement. To minimize these errors, it is recommended that the frequency is measured and protection-based sampling from the current is performed while voltages are gone.

When the "Forced CT f tracking" parameter is activated and voltages are gone, the frequency from the selected current-based reference channel 3 (the current from IL3) is used for current sampling. This eliminates any possible measurement errors in the fixed frequency mode.

For example, let us say a 500 A current is measured on the primary side while the <u>fixed</u> frequency is set to 50 Hz. This results in the frequency dropping to 46 Hz, while the actual current measurement would be 460 A. Therefore, the system would have an error of 40 A.

Event block name	Event names
M1VT1	Voltage memory enabled
M1VT1	Voltage memory disabled
M1VT1	Voltage low detected ON
M1VT1	Voltage low detected OFF
M1VT1	Current high detected ON
M1VT1	Current high detected OFF
M1VT1	Frequency tracked from CT ON
M1VT1	Frequency tracked from CT OFF
M1VT1	Using Voltage memory ON

Table. 4.2.2 - 35. \	Voltage memory	vevent messages.

Event block name	Event names
M1VT1	Using Voltage memory OFF
M1VT1	Voltage memory blocked ON
M1VT1	Voltage memory blocked OFF

4.2.3 Power and energy calculation

Power is divided into three magnitudes: apparent power (S), active power (P) and reactive power (Q). Energy measurement calculates magnitudes for active and reactive energy. Energy can flow to the forward direction (exported) or to the reverse direction (imported).

If a unit has more than one CT measurement module, the user can choose which module's current measurement is used by the power calculation. The power and energy measurements are updated every 5 milliseconds.

Line-to-neutral voltages available

Power is calculated from line-to-neutral voltages and phase currents. If line-to-line voltages are connected, the device can calculate line-to-neutral voltages based on the measured zero sequence voltage. The following equations apply for power calculations with the line-to-neutral mode and the line-to-line voltage mode (with U0 connected and measured):

Figure. 4.2.3 - 21. Three-phase power (S) calculation.

$$S_{L1} = U_{L1} \times I_{L1}$$

$$S_{L2} = U_{L2} \times I_{L2}$$

$$S_{L3} = U_{L3} \times I_{L3}$$

$$S = S_{L1} + S_{L2} + S_{L3}$$

Figure. 4.2.3 - 22. Three-phase active power (P) calculation.

 $P_{L1} = U_{L1} \times I_{L1} \cos \varphi$ $P_{L2} = U_{L2} \times I_{L2} \cos \varphi$ $P_{L3} = U_{L3} \times I_{L3} \cos \varphi$ $P = P_{L1} + P_{L2} + P_{L3}$

In these equations, phi (ϕ) is the angle difference between voltage and current.

Figure. 4.2.3 - 23. Three-phase reactive power (Q) calculation.

 $Q_{L1} = U_{L1} \times I_{L1} \sin \varphi$ $Q_{L2} = U_{L2} \times I_{L2} \sin \varphi$ $Q_{L3} = U_{L3} \times I_{L3} \sin \varphi$ $Q = Q_{L1} + Q_{L2} + Q_{L3}$

Active power can be to the forward or the reverse direction. The direction of active power can be indicated with the power factor (Cos (ϕ), or Cosine phi), which is calculated according the following formula:

$$3PH Cos(phi) = \frac{P}{S}$$

$$L1 Cos(phi) = \frac{P_{L1}}{S_{L1}}$$

$$L2 Cos(phi) = \frac{P_{L2}}{S_{L2}}$$

$$L3 Cos(phi) = \frac{P_{L3}}{S_{L3}}$$

The direction of reactive power is divided into four quadrants. Reactive power may be inductive or capacitive on both forward and reverse directions. Reactive power quadrant can be indicated with Tan (ϕ) (tangent phi), which is calculated according the following formula:

$3PH Tan(phi) = \frac{Q}{P}$		(Q(ind)	
$L1 Tan(phi) = \frac{Q_{L1}}{P_{L1}}$		Р<0 Q>0 cap - cosfi - PF - тт	P>0 Q>0 ind + cosfi +	
$L2 Tan(phi) = \frac{Q_{L2}}{P_{L2}}$	-P	P<0 III Q<0	1	→P
$L3 Tan(phi) = \frac{Q_{L3}}{P_{L3}}$		ind - cosfi - PF +	cap + cosfi + PF -	
		-0	(cap)	

Power factor calculation is done similarly to the Cosine phi calculation but the polarity is defined by the reactive power direction. Therefore, the power factor is calculated with the following formula:

$$3PH PF = \frac{P}{S} * \frac{Q}{|Q|}$$

$$L1 PF = \frac{P_{L1}}{S_{L1}} * \frac{Q_{L1}}{|Q_{L1}|}$$

$$L2 PF = \frac{P_{L2}}{S_{L2}} * \frac{Q_{L2}}{|Q_{L2}|}$$

$$L3 PF = \frac{P_{L3}}{S_{L3}} * \frac{Q_{L3}}{|Q_{L3}|}$$

Only line-to-line voltages available

© Arcteq Relays Ltd IM00035

If the line-to-line voltages are measured but the zero sequence voltage is not measured or is not otherwise known, the three-phase power calculation is based on Aron's theorem:

$$S = U_{23} \times I_{L1} \cos(30) + U_{31} \times I_{L2} \cos(30)$$
$$P = U_{23} \times I_{L1} \cos(30 - \varphi) + U_{31} \times I_{L2} \cos(30 + \varphi)$$
$$Q = U_{23} \times I_{L1} + \sin(30 - \varphi) + U_{31} \times I_{L2} \sin(30 + \varphi)$$

Both $cos(\phi)$ and $tan(\phi)$ are calculated in the same way as in the line-to-neutral mode.

Troubleshooting

Check the "Troubleshooting" section in chapters "Current measurement and scaling" and "Voltage measurement and scaling" for more information. Most power and energy measurement problems are usually related to the same issues (i.e. wiring errors, wrong measurement modes, faulty frequency settings, etc.).

Settings

Table. 4.2.3 - 36	. Power and energy mea	surement settings
-------------------	------------------------	-------------------

Name	Range	Step	Default	Description
3ph active energy measurement	DisabledEnabled	-	Disabled	Enables/disables the active energy measurement.
3ph reactive energy measurement	DisabledEnabled	-	Disabled	Enables/disables the reactive and apparent energy measurement.
3ph energy megas or kilos	MegaKilo	-	Mega	Defines whether energy is measured with the prefix 'kilo' (10 ³) or 'mega' (10 ⁶).
Edit energy values	DisabledEnabled	-	Disabled	When this parameter is enabled it is possible to manually edit exported and imported active energy values. NOTICE! "E 3ph M or k" parameter has to be set to "kilo" for this feature to function.
Invert imp/ exp energy directions	Not invertedInverted	-	Not inverted	Inverts the direction of imported and exported energy without affecting the direction of power calculation.
Nominal power kVA	0.10500000.00kVA	0.01kVA	100kVA	Defines the nominal power of the protected object.
PQ Quadrant	 Undefined Q1 Fwd Ind Q2 Rev Cap Q3 Rev Ind Q4 Fwd Cap 	-	Undefined	Indicates what the power PQ quadrant is at that moment.

Name	Range	Step	Default	Description
VA Quadrant	 Undefined Q1 Fwd Cap AV Q2 Rev Ind AV Q3 Rev Cap VA Q4 Fwd Ind VA 	-	Undefined	Indicates what the power VA quadrant is at that moment.
Reset energy calculators ("Reset 3ph Energies")	• - • Reset	-	-	Resets the memory of the three-phase energy calculators. Goes automatically back to the "-" state after the reset is finished.
Phase active energy measurement	DisabledEnabled	-	Disabled	Enables/disables the active energy per phase measurement.
Phase reactive energy measurement	DisabledEnabled	-	Disabled	Enables/disables the reactive energy per phase measurement.
Phase energies megas or kilos	• Mega • Kilo	-	Mega	Defines whether energy (per phase) is measured with the prefix 'kilo' (10 ³) or 'mega' (10 ⁶).
Reset energy calculators (per phase) ("Reset E per phase")	• - • Reset	-	-	Resets the memory of the indivisual phase energy calculator. Goes automatically back to the "-" state after the reset is finished.

Table. 4.2.3 - 37. Energy Dose Counter 1 settings

Name	Range	Step	Default	Description
Energy dose counter mode	DisabledActivated	-	Disabled	Enables/disables energy dose counters generally.
Energy dose counter LN mode	 On Blocked Test Test/Blocked Off 	-	On	Set mode of DOS block. This parameter is visible only when <i>Allow setting of individual LN</i> <i>mode</i> is enabled in <i>General</i> menu.
Energy does counter LN behaviour	 On Blocked Test Test/Blocked Off 	-	-	Displays the mode of DOS block. This parameter is visible only when <i>Allow setting of individual LN</i> <i>mode</i> is enabled in <i>General</i> menu.
Clear pulse counter	• - • Clear	-	-	Resets the "DC 14 Pulses sent" counters back to zero.
DC 14 enable	DisabledEnabled	-	Disabled	Enables/disables the energy dose counter 14 individually.

Name	Range	Step	Default	Description
DC 14 Input signal select	 3PH.Fwd.Act.EP 3PH.Rev.Avt.EP 3PH.Fwd.React.EQ.CAP 3PH.Fwd.React.EQ.IND 3PH.Rev.React.EQ.CAP 3PH.Rev.React.EQ.IND 	-	3PH.Fwd.Act.EP	Selects whether the energy is active or reactive, whether the direction of the energy is forward of reverse, and whether reactive energy is inductive or capacitive.
DC 14 Input signal	-1 × 10 ⁶ 1 × 10 ⁶	0.01	-	The total amount of energy consumed.
DC 14 Pulse magnitude	01800kW/var	0.005kW/ var	1kW/Var	The set pulse size. An energy pulse is given every time the set magnitude is exceeded.
DC 14 Pulse length	01800s	0.005s	1s	The total length of a control pulse.
DC14 Pulses sent	04 294 967 295	1	-	Indicates the total number of pulses sent.

Table. 4.2.3 - 38. DC 1...4 Pulse out settings

Name	Range	Step	Default	Description
DC 14 Pulse out	OUT1OUTx	-	None selected	The selection of the controlled physical outputs.

Power measurements

The following power calculations are available when the voltage and the current cards are available.

Table. 4.2.3 - 39. Three-phase power calculations.

Name	Range	Step	Description
3PH Apparent power (S)	-1x10 ⁶ 1x10 ⁶ kVA	0.01kVA	The total three-phase apparent power in kilo-volt- ampere
3PH Active power (P)	-1x10 ⁶ 1x10 ⁶ kW	0.01kW	The total three-phase active power in kilowatts
3PH Reactive power (Q)	-1x10 ⁶ 1x10 ⁶ kVar	0.01kVar	The total three-phase reactive power in kilovars
3PH Apparent power (S MVA)	-1x10 ⁵ 1x10 ⁵ MVA	0.01MVA	The total three-phase apparent power in megawatts
3PH Active power (P MW)	-1x10 ⁵ 1x10 ⁵ MW	0.01MW	The total three-phase active power in mewatts
3PH Reactive power (QMVar)	-1x10 ⁵ 1x10 ⁵ MVar	0.01MVar	The total three-phase active power in megavars
3PH Tan(phi)	-1x10 ⁶ 1x10 ⁶	0.01	The direction of three-phase active power
3PH Cos(phi)	-1x10 ⁶ 1x10 ⁶	0.01	The direction of three-phase reactive power

Name	Range	Step	Description
3PH Power factor	-1x10 ⁶ 1x10 ⁶	0.0001	The three-phase power factor

Table. 4.2.3 - 40. Single-phase power calculations (L1...L3).

Name	Unit	Range	Step	Description
Lx Apparent power (S)	kVA	-1x10 ⁶ 1x10 ⁶	0.01	The apparent power of Phase Lx in kilo-volt-amperes
Lx Active power (P)	kW	-1x10 ⁶ 1x10 ⁶	0.01	The active power of Phase Lx in kilowatts
Lx Reactive power (Q)	kVar	-1x10 ⁶ 1x10 ⁶	0.01	The reactive power of Phase Lx kilovars
Lx Tan(phi)	-	-1x10 ⁶ 1x10 ⁶	0.01	The direction of Phase Lx's active power
Lx Cos(phi)	-	-1x10 ⁶ 1x10 ⁶	0.01	The direction of Phase Lx's reactive power
Lx Power factor	-	-1x10 ⁶ 1x10 ⁶	0.0001	The power factor of Phase Lx

Energy measurements

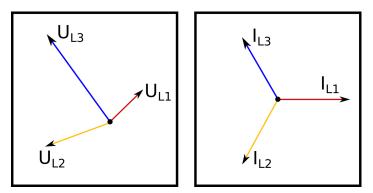
The following energy calculations are available when the voltage and the current cards are available. Please note that the unit prefix is determined by the user's selection between 'kilo' and 'mega' in "Threephase energy prefix ("E 3ph M or k")" under the general "Power and energy measurement settings".

Table. 4.2.3 - 41.	Three-phase energy calculations.
--------------------	----------------------------------

Name	Range	Step	Description
Exported Active Energy (P) (kWh or MWh)	-1x10 ⁹ 1x10 ⁹	0.01	The total amount of exported active energy.
Imported Active Energy (P) (kWh or MWh)	-1x10 ⁹ 1x10 ⁹	0.01	The total amount of imported active energy.
Active Energy (P) Export/Import balance (kWh or MWh)	-1x10 ⁹ 1x10 ⁹	0.01	The sum of imported and exported active energy.
Exported (Q) while Export (P) (kVarh or MVarh)	-1x10 ⁹ 1x10 ⁹	0.01	The total amount of exported reactive energy while active power is exported.
Imported (Q) while Export (P). (kVarh or MVarh)	-1x10 ⁹ 1x10 ⁹	0.01	Total amount of imported reactive energy while active energy is exported.
Reactive energy (Q) balance while export (P) (kVarh or MVarh)	-1x10 ⁹ 1x10 ⁹	0.01	The sum of imported and exported reactive capacitive energy while active power is exported.
Exported (Q) while Import (P) (kVarh or MVarh)	-1x10 ⁹ 1x10 ⁹	0.01	The total amount of exported reactive energy while active energy is imported.
Imported (Q) while Import (P) (kVarh or MVarh)	-1x10 ⁹ 1x10 ⁹	0.01	The total amount of imported reactive energy while active energy is imported.
Reactive energy (Q) balance while Import (P) (kVarh or MVarh)	-1x10 ⁹ 1x10 ⁹	0.01	The sum of imported and exported reactive energy while active energy is imported.

Name	Range	Step	Description
Apparent Energy (S) while Export (P) (kVAh or MVAh)	-1x10 ⁹ 1x10 ⁹	0.01	The total amount of exported apparent energy while active energy is exported.
Apparent Energy (S) while Import (P) (kVAh or MVAh)	-1x10 ⁹ 1x10 ⁹	0.01	The total amount of exported apparent energy while active energy is imported.
Apparent Energy (S) Net	-1x10 ⁹ 1x10 ⁹	0.01	Total amount of apparent energy.
Real Energy (P) Net	-1x10 ⁹ 1x10 ⁹	0.01	The sum of active energy supply and demand.
Reactive Energy (Q) Net	-1x10 ⁹ 1x10 ⁹	0.01	The sum of reactive energy supply and demand.
Real Energy (P) Supply	-1x10 ⁹ 1x10 ⁹	0.01	Total amount of active energy supplied. Default supply direction towards busbar.
Reactive Energy (Q) Supply	-1x10 ⁹ 1x10 ⁹	0.01	Total reactive energy supplied. Default supply direction towards busbar.
Real Energy (P) Demand	-1x10 ⁹ 1x10 ⁹	0.01	Total amount of active energy demand. Default demand direction from busbar.
Reactive Energy (Q) Demand	-1x10 ⁹ 1x10 ⁹	0.01	Total amount of reactive energy demand. Default demand direction from busbar.

Table. 4.2.3 - 42. Single-phase energy calculations (L1...L3).


Name	Range	Step	Description
Export Active Energy Lx (kWh or MWh)	-1x10 ⁹ 1x10 ⁹	0.01	The exported active energy of the phase.
Import Active Energy (kWh or MWh)	-1x10 ⁹ 1x10 ⁹	0.01	The imported active energy of the phase.
Active Energy (P) Export/Import balance (kWh or MWh)	-1x10 ⁹ 1x10 ⁹	0.01	The sum of the phase's imported and exported active energy.
Exported (Q) while Export (P) Lx (kVarh or MVarh)	-1x10 ⁹ 1x10 ⁹	0.01	The exported reactive energy of the phase while active energy is exported.
Imported (Q) while Export (P) Lx (kVarh or MVarh)	-1x10 ⁹ 1x10 ⁹	0.01	The imported reactive energy of the phase while active energy is exported.
Reactive Energy (Q) balance while Export (P) Lx (kVarh or MVarh)	-1x10 ⁹ 1x10 ⁹	0.01	The sum of the phase's imported and exported reactive energy while active energy is exported.
Exported (Q) while Import (P) Lx (kVarh or MVarh)	-1x10 ⁹ 1x10 ⁹	0.01	The exported reactive energy of the phase while active energy is imported.
Imported (Q) while Import (P) Lx (kVarh or MVarh)	-1x10 ⁹ 1x10 ⁹	0.01	The imported reactive energy of the phase while active energy is imported.
Reactive energy (Q) balance while Import (P) Lx (kVarh or MVarh)	-1x10 ⁹ 1x10 ⁹	0.01	The sum of the phase's imported and exported reactive energy while active energy is imported.
Apparent Energy (S) while Export (P) Lx	-1x10 ⁹ 1x10 ⁹	0.01	The apparent energy of the phase while active energy is exported.

Name	Range	Step	Description
Apparent Energy (S) while Import (P) Lx	-1x10 ⁹ 1x10 ⁹	0.01	The apparent energy of the phase while active energy is imported.

Calculation examples

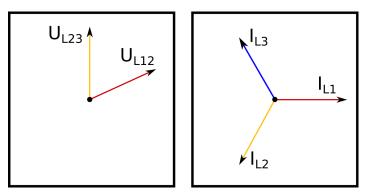
Here is an example of power calculation. Both wiring methods (line-to-line and line-to-neutral) are checked with the same signal injection. The voltage scaling is set to $20\ 000$: $100\ V$ and the current scaling is set to 1000 : $5\ A$.

Voltages (line-to-neutral):	Currents:
U _{L1} = 40.825 V, 45.00°	I _{L1} = 2.5 A, 0.00°
U _{L2} = 61.481 V, -159.90°	I _{L2} = 2.5 A, -120.00°
U _{L3} = 97.742 V, 126.21°	I _{L3} = 2.5 A, 120.00°

 $S_{L1} = U_{L1} \times I_{L1} = 40.825 \text{ V} \times 2.5 \text{ A} = 102 \text{ VA} \text{ (secondary) } 4.08 \text{ MVA} \text{ (primary)}$

 $P_{L1} = U_{L1} \times I_{L1} \cos \varphi = 40.825 \text{ V} \times 2.5 \text{ A} \cos(45^{\circ} - 0^{\circ}) = 72.2 \text{ W} \text{ (secondary) } 2.89 \text{ MW} \text{ (primary)}$

 $Q_{L1} = U_{L1} \times I_{L1} \sin \varphi = 40.825 \text{ V} \times 2.5 \text{ A} \sin(45^{\circ} - 0^{\circ}) = 72.2 \text{ var (secondary) } 2.89 \text{ MVar (primary)}$


 $L1 Tan(phi) = \frac{Q_{L1}}{P_{L1}} = \frac{2.89}{2.89} = 1.00$

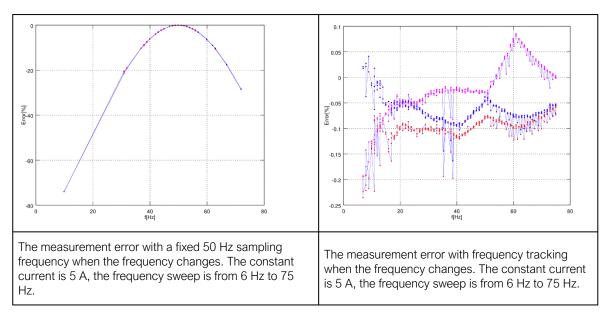
$$L1 Cos(phi) = \frac{P_{L1}}{S_{L1}} = \frac{2.89}{4.08} = 0.71$$

Name	Value	Name	Value	Name	Value	Name	Value
L1 (S)	4.08 MVA	L2 (S)	6.15 MVA	L3 (S)	9.77 MVA	3PH (S)	20.00 MVA
L1 (P)	2.89 MW	L2 (P)	4.72 MW	L3 (P)	9.71 MW	3PH (P)	17.32 MW
L1 (Q)	2.89 Mvar	L2 (Q)	-3.94 Mvar	L3 (Q)	1.06 Mvar	3PH (Q)	0.01 Mvar
L1 Tan	1.00	L2 Tan	-0.83	L3 Tan	0.11	3PH Tan	0.00
L1 Cos	0.71	L2 Cos	0.77	L3 Cos	0.99	3PH Cos	0.87

Voltages (line-to-line):	Currents:	
U _{L12} = 100.00 V, 30.00°	I _{L1} = 2.5 A, 0.00°	

Voltages (line-to-line):	Currents:	
U _{L23} = 100.00 V, -90.00°	I _{L2} = 2.5 A, -120.00°	
	I _{L3} = 2.5 A, 120.00°	

 $S = U_{12} \times I_{L1} + U_{23} \times I_{L2}$ $S = 100 \text{ V} \times 2.5 \text{ A} + 100 \text{ V} \times 2.5 \text{ A} = 500 \text{ VA (sec) } 20.00 \text{ MVA (pri)}$ $P = U_{12} \times I_{L1} \cos(-\varphi) + U_{23} \times I_{L2} \cos(\varphi)$ $P = 100 \text{ V} \times 2.5 \text{ A} \cos -(30^{\circ} - 0^{\circ}) + 100 \text{ V} \times 2.5 \text{ A} \cos(270^{\circ} - 240^{\circ}) = 433 \text{ W (sec) } 17.32 \text{ MW (pri)}$ $Q = U_{12} \times I_{L1} + \sin(-\varphi) + U_{23} \times I_{L2} \sin(\varphi)$ $Q = 100 \text{ V} \times 2.5 \text{ A} \sin -(30^{\circ} - 0^{\circ}) + 100 \text{ V} \times 2.5 \text{ A} \sin(270^{\circ} - 240^{\circ}) = 0 \text{ var (sec) } 0 \text{ Mvar (pri)}$ $3PH Tan(phi) = \frac{Q}{P} = \frac{0.01}{17.32} = 0.00 \qquad 3PH Cos(phi) = \frac{P}{S} = \frac{17.32}{20.00} = 0.87$


Name	Values
3PH (S)	20.00 MVA
3PH (P)	17.32 MW
3PH (Q)	0.00 Mvar
3PH Tan	0.00
3PH Cos	0.87

4.2.4 Frequency tracking and scaling

Measurement sampling can be set to the frequency tracking mode or to the fixed userdefined frequency sampling mode. The benefit of frequency tracking is that the measurements are within a pre-defined accuracy range even when the fundamental frequency of the power system changes.

Frequency independent current and voltage measurement accuracy is achieved with algorithms specified in patent US 10,809,287.

Table. 4.2.4 - 43. Frequency tracking effect (FF changes from 6 Hz to 75 Hz).

As the figures above show, the sampling frequency has a major effect on the device's measurement accuracy. If the sampling is not tracked to the system frequency, for example a 10 Hz difference between the measured and the set system frequency can give a measurement error of over 5 %. The figures also show that when the frequency is tracked and the sampling is adjusted according to the detected system frequency, the measurement accuracy has an approximate error of 0.1...- 0.2 % error in the whole frequency range.

AQ -200 series devices have a measurement accuracy that is independent of the system frequency. This has been achieved by adjusting the sample rate of the measurement channels according to the measured system frequency; this way the FFT calculation always has a whole power cycle in the buffer. The measurement accuracy is further improved by Arcteq's patented calibration algorithms that calibrate the analog channels against eight (8) system frequency points for both magnitude and angle. This frequency-dependent correction compensates the frequency dependencies in the used, non-linear measurement hardware and improves the measurement accuracy significantly. Combined, these two methods give an accurate measurement result that is independent of the system frequency.

Troubleshooting

When the measured current, voltage or frequency values differ from the expected values, the following table offers possible solutions for the problems.

Problem	Check / Resolution
The measured current or voltage amplitude is lower than it should be./ The values are "jumping" and are not stable.	The set system frequency may be wrong. Please check that the frequency settings match the local system frequency, or change the measurement mode to "Tracking" (<i>Measurement</i> \rightarrow <i>Frequency</i> \rightarrow "Sampling mode") so the device adjusts the frequency itself.
The frequency readings are wrong.	In Tracking mode the device may interpret the frequency incorrectly if no current is injected into the CT (or voltage into the VT). Please check the frequency measurement settings (<i>Measurement</i> \rightarrow <i>Frequency</i>).

Settings

Name	Range	Step	Default	Description
Sampling mode	FixedTracking	-	Fixed	Defines which measurement sampling mode is in use: the fixed user-defined frequency, or the tracked system frequency.
System nominal frequency	7.00075.000Hz	0.001Hz	50Hz	The user-defined system nominal frequency that is used when the "Sampling mode" setting has been set to "Fixed".
Tracked system frequency	0.00075.000Hz	0.001Hz	-	Displays the rough measured system frequency.
Sampling frequency in use	0.00075.000Hz	0.001Hz	-	Displays the tracking frequency that is in use at that moment.
Frequency reference 1	 None CT1IL1 CT2IL1 VT1U1 VT2U1 	-	CT1IL1	The first reference source for frequency tracking.
Frequency reference 2	 None CT1IL2 CT2IL2 VT1U2 VT2U2 	-	CT1IL2	The second reference source for frequency tracking.
Frequency reference 3	 None CT1IL3 CT2IL3 VT1U3 VT2U3 	-	CT1IL3	The third reference source for frequency tracking.
Frequency tracking quality	 No trackable channels Reference 1 trackable Reference 2 trackable References 1 & 2 trackable Reference 3 trackable Reference 1 & 3 trackable References 2 & 3 trackable All references trackable 	-	-	Defines the frequency tracker quality. If the measured current (or voltage) amplitude is below the threshold, the channel tracking quality is 0 and cannot be used for frequency tracking. If all channels' magnitudes are below the threshold, there are no trackable channels.
Frequency measurement in use	 No track ch Ref1 Ref2 Ref3 	-	-	Indicates which reference is used at the moment for frequency tracking.

Name	Range	Step	Default	Description
Start behavior	 Start tracking immediately First nominal or tracked 	-	Start tracking immediately	Defines the how the tracking starts. Tracking can start immediately, or there can be a set delay time between the receiving of the first trackable channel and the start of the tracking.
Start sampling with	 Use track frequency Use nom frequency 	-	Use track frequency	Defines the start of the sampling. Sampling can begin with a previously tracked frequency, or with a user-set nominal frequency.
Use nominal frequency until	01800.000s	0.005s	0.100s	Defines how long the nominal frequency is used after the tracking has started. This setting is only valid when the "Sampling mode" setting is set to "Tracking" and when the "Start behavior" is set to "First nominal or tracked".
Tracked f channel A	0.00075.000Hz	0.001Hz	-	Displays the rough value of the tracked frequency in Channel A.
Tracked f channel B	0.00075.000Hz	0.001Hz	-	Displays the rough value of the tracked frequency in Channel B.
Tracked f channel C	0.00075.000Hz	0.001Hz	-	Displays the rough value of the tracked frequency in Channel C.
System measured frequency	 One f measured Two f measured Three f measured 	-	-	Displays the amount of frequencies that are measured.
f.atm. Protections	0.00075.000Hz	0.001Hz	-	Frequency measurement value used by protection functions. When frequency is not measurable this value returns to value set to "System nominal frequency" parameter.
f.atm. Display	0.00075.000Hz	0.001Hz	-	Frequency measurement value used in display. When frequency is not measurable this value is "0 Hz".
f measurement from	 Not measurable Avg Ref 1 Avg Ref 2 Avg Ref 3 Track Ref 1 Track Ref 1 Track Ref 3 Fast Ref 1 Fast Ref 2 Fast Ref 3 	-	-	Displays which reference is used for frequency measurement.
SS1.meas.frqs SS2.meas.frqs	0.00075.000Hz	0.001Hz	-	Displays frequency used by "system set" channel 1 and 2.

Name	Range	Step	Default	Description
SS1f meas.from	 Not measurable Fast Ref U3 Fast Ref U4 	-	-	Displays which voltage channel frequency reference is used by "system set" voltage channel.
SS2f meas.from	Not measurableFast Ref U4	-	-	Displays if U4 channel frequency reference is measurable or not when the channel has been set to "system set" mode.

4.3 General menu

The *General* menu consists of basic settings and indications of the device. Additionally, the all activated functions and their status are displayed in the *Protection, Control* and *Monitor* profiles.

Table. 4.3 - 45. The General menu read-only parameters

Name	Description			
Serial number	The unique serial number identification of the unit.			
Firmware version	The firmware software version of the unit.			
Hardware configuration The order code identification of the unit.				
System phase rotating order at the moment	The selected system phase rotating order. Can be changed with parameter "System phase rotating order".			
UTC time	The UTC time value which the device's clock uses.			

Table. 4.3 - 46. Parameters and indications in the General menu.

Name	Range	Default	Description		
Device name	-	Unitname			
Device location	-	Unitlocation	The file name uses these fields when loading the .aqs configuration file from the AQ-200 unit.		
Enable stage forcing	DisabledEnabled	Disabled	When this parameter is enabled it is possible for the user to force the protection, control and monitoring functions to different statuses like START and TRIP. This is done in the function's <i>Info</i> page with the <i>Force status to</i> parameter.		
Allow setting of device mode	 Prohibited From HMI/ setting tool only Allowed 	Prohibited	Allows global mode to be modified from setting tool, HMI and IEC61850. Prohibited: Cannot be changed. From HMI/setting tool only: Can only be changed from the setting tool or HMI Allowed: Can be changed from the setting tool, HMI, and IEC 61850 client.		

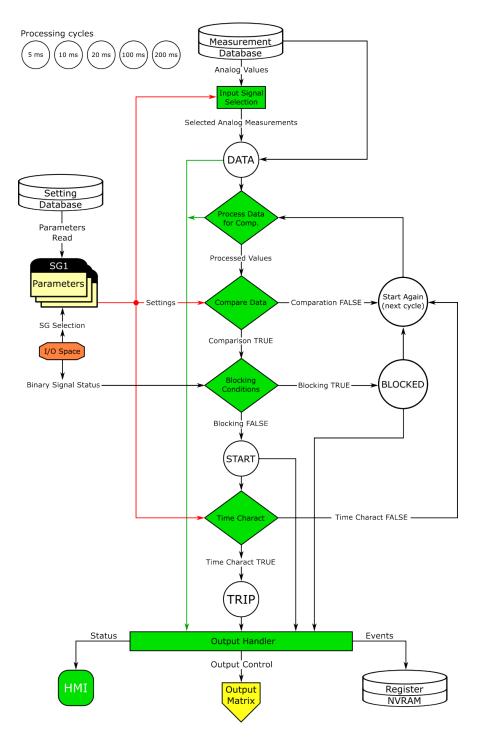
Name	Range	Default	Description
Allow setting of individual LN mode	 Prohibited From HMI/ setting tool only Allowed 		Allow local modes to be modified from setting tool, HMI and IEC61850. Prohibited: Cannot be changed. From HMI/setting tool only: Can only be changed from the setting tool or HMI Allowed: Can be changed from the setting tool, HMI, and IEC 61850 client.
System phase rotating order	• A-B-C • A-C-B	A-B-C	Allows the user to switch the expected order in which the phase measurements are wired to the unit.
Language	 User defined English Finnish Chinese Spanish French German Russian Ukrainian Kazakh 	English	Changes the language of the parameter descriptions in the HMI. If the language has been set to "Other" in the settings of the AQtivate setting tool, AQtivate follows the value set into this parameter.
AQtivate ethernet port	 All COM A Double Ethernet card 	All	If the device has a double Ethernet option card it is possible to choose which ports are available for connecting with AQtivate software.
Clear events	• - • Clear	-	Clears the event history recorded in the AQ-200 device.
Display brightness	08	4	Changes the display brightness. Brightness level 0 turns the display off.
Display sleep timeout	03600s	Os	If no buttons are pressed after a set time, the display changes the brightness to whatever is set on the "Display sleep brightness" parameter. If set to 0 s, this feature is not in use. When the device is in sleep mode pressing any of the buttons on the front panel of the device will wake the display.
Display sleep brightness	08	0	Defines the brightness of the display when the set display sleep timeout has elapsed. The brightness level "0" turns the display off.
Return to default view	03600s	Os	If the user navigates to a menu and gives no input after a period of time defined with this parameter, the unit automatically returns to the default view. If set to 0 s, this feature is not in use.
LED test	 -Activated	-	When activated, all LEDs are lit up. LEDs with multiple possible colors blink each color.
HMI restart	• - • Restart	-	When activated, display restarts.
Display color theme	Light themeDark theme	Light theme	Defines the color theme used in the HMI.

Version: 2	.12
------------	-----

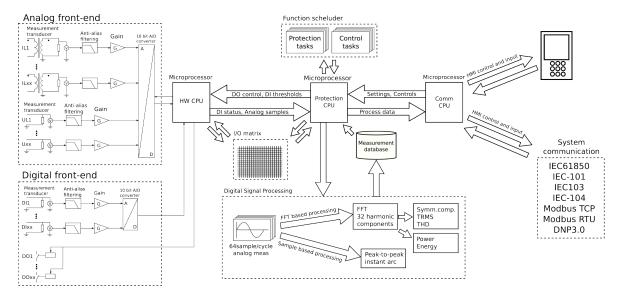
Name	Range	Default	Description
Reset latches	• - • Reset	-	Resets the latched signals in the logic and the matrix. When a reset command is given, the parameter automatically returns back to "-".
Measurement recorder	DisabledEnabled	Disabled	Enables the measurement recorder tool, further configured in Tools \rightarrow Misc \rightarrow Measurement recorder.
I/0 default object selection	 OBJ1 OBJ2 OBJ3 OBJ4 OBJ5 OBJ6 OBJ7 OBJ8 OBJ9 OBJ10 	OBJ1	"I" and "0" push buttons on the front panel of the device have an indication LED. This parameter defines which objects' status push buttons follow when lighting up the LEDs.
Device Mode	 On Blocked Test Test/ Blocked Off 	On	Set mode of device block. This parameter is visible only when <i>Allow setting of device</i> <i>mode</i> is enabled in <i>General</i> menu.
Reconfigure mimic	 -Reconfigure	-	Reloads the mimic to the unit.

Table. 4.3 - 47. General menu logical inputs.

Name	Description
Reset last fault registers	Signal set to this point can be used for resetting latest recorded fault register.
Reset latches	Signals set to this point can be used for resetting latched signals. An alternative to using the "Back" button on the front panel of the device.
Ph.Rotating Logic control 0=A-B-C, 1=A-C-B	Signals set to this point can be used for switching the expected phase rotating order.


4.4 Protection functions

4.4.1 General properties of a protection function


The following flowchart describes the basic structure of any protection function. The basic structure is composed of analog measurement values being compared to the pick-up values and operating time characteristics.

AQ-C255 Instruction manual

Version: 2.12

The protection function is run in a completely digital environment with a protection CPU microprocessor which also processes the analog signals transformed into the digital form.

Figure. 4.4.1 - 24. Principle diagram of the protection device platform.

In the following chapters the common functionalities of protection functions are described. If a protection function deviates from this basic structure, the difference is described in the corresponding chapter of the manual.

Pick-up

The X_{set} parameter defines the pick-up level of the function, and this in turn defines the maximum or minimum allowed measured magnitude (in per unit, absolute or percentage value) before the function takes action. The function constantly calculates the ratio between the pick-up parameter set by the user and the measured magnitude (X_m). The reset ratio of 97 % is built into the function and is always relative to the X_{set} value. If a function's pick-up characteristics vary from this description, they are defined in the function section in the manual.

Figure. 4.4.1 - 25. Pick up and reset.

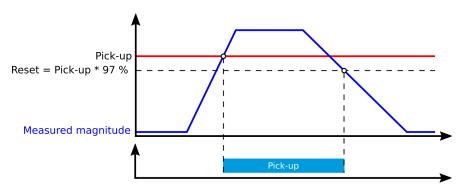
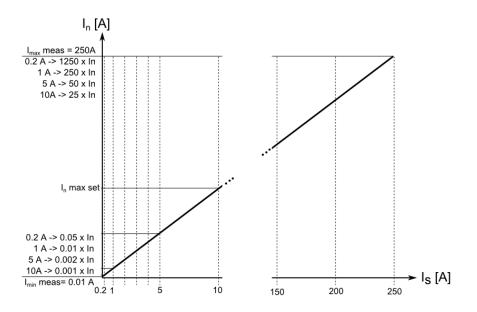



Figure. 4.4.1 - 26. Measurement range in relation to the nominal current.

The I_n magnitude refers to the user set nominal current which can range from 0.2...10 A, typically 0.2 A, 1A or 5 A. With its own current measurement card, the device will measure secondary currents from 0.001 A up to 250 A. To this relation the pick-up setting in secondary amperes will vary.

Function blocking

The blocking signals are checked in the beginning of each program cycle. A blocking signal is received from the blocking matrix for the function dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when pick-up element activates, a BLOCKED signal is generated and the function will not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The blocking of the function causes an HMI display event and a time stamped blocking event with information of the startup current values and its fault type to be issued.

The variables users can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

The operating timers' behavior during a function can be set for trip signal and for the release of the function in case the pick-up element is reset before the trip time has been reached. There are three basic operating modes available for the function:

- Instant operation: activates the trip signal with no additional time delay simultaneously with the start signal.
- Definite time operation (DT): activates the trip signal after a user-defined time delay regardless of the measured current as long as the current is above or below the *X*_{set} value and thus the pick-up element is active (independent time characteristics).
- Inverse definite minimum time (IDMT): activates the trip signal after a time which is in relation to the set pick-up value *X*_{set} and the measured value *X*_m (dependent time characteristics).

Both IEC and IEEE/ANSI standard characteristics as well as user settable parameters are available for the IDMT operation. Please note that in the IDMT mode *Definite (Min)* operating time delay is also determines the minimum time for protection tripping (see the figure below). If this function is not desired the parameter should be set to 0 seconds.

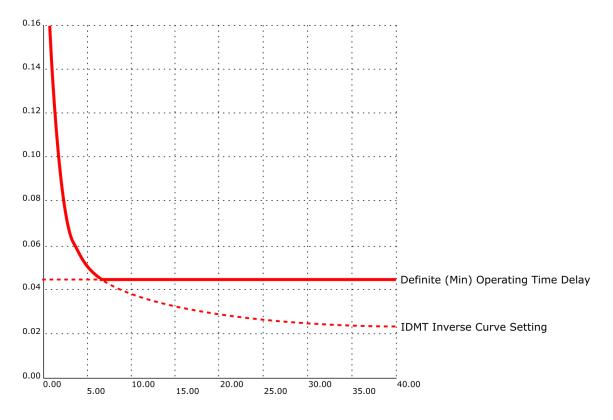


Figure. 4.4.1 - 27. Operating time delay: *Definite (Min)* and the minimum for tripping.

Table. 4.4.1 - 48. Operating time characteristics setting parameters (general).

Name	Range	Step	Default	Description
Delay type	• DT • IDMT	-	DT	Selects the delay type for the time counter. The selection is made between dependent (IDMT) and independent (DT) characteristics.
Definite (min) operating time delay	0.0001800.000s	0.005s	0.040s	When the "Delay type" parameter is set to "DT", this parameter acts as the expected operating time for the protection function. When set to 0 s, the stage operates instantaneously without any additional delay. When the parameter is set to 0.0051800 s, the stage operates as independent delayed. When the "Delay type" parameter has been set to "IDMT", this parameter can be used to determine the minimum operating time for the protection function. Example of this is presented in the figure above.
Delay curve series	• IEC • IEEE	-	IEC	Selects whether the delay curve series for an IDMT operation follows either IEC or IEEE/ANSI standard defined characteristics. This setting is active and visible when the "Delay type" parameter is set to "IDMT".

Name	Range	Step	Default	Description
Delay characteristics IEC	• NI • EI • VI • LTI • Param	-	NI	Selects the IEC standard delay characteristics. The options include the following: Normally Inverse ("NI"), Extremely Inverse ("EI"), Very Inverse ("VI") and Long Time Inverse ("LTI") characteristics. Additionally, the "Param" option allows the tuning of the constants A and B which then allows the setting of characteristics following the same formula as the IEC curves mentioned here. This setting is active and visible when the "Delay type" parameter is set to "IDMT" and the "Delay curve series" parameter is set to "IEC".
Delay characteristics IEEE	 ANSI NI ANSI VI ANSI EI ANSI LTI IEEE MI IEEE VI IEEE EI Param 	-	ANSI NI	Selects the IEEE and ANSI standard delay characteristics. The options for ANSI include the following: Normal Inverse ("ANSI NI"), Very Inverse ("ANSI VI"), Extremely inverse ("ANSI EI"), Long time inverse ("ANSI LTI") characteristics. IEEE: Moderately Inverse ("IEEE MI"), Very Inverse ("IEEE VI"), Extremely Inverse ("IEEE EI") characteristics. Additionally, the "Param" option allows the tuning of the constants A, B and C which then allows the setting of characteristics following the same formula as the IEEE curves mentioned here. This setting is active and visible when the "Delay type" parameter is set to "IDMT" and the "Delay curve series" parameter is set to "IEEE".
Time dial setting k	0.0125.00s	0.01s	0.05s	Defines the time dial/multiplier setting for IDMT characteristics. This setting is active and visible when the "Delay type" parameter is set to "IDMT".
A	0.0000250.0000	0.0001	0.0860	Defines the Constant A for IEC/IEEE characteristics. This setting is active and visible when the "Delay type" parameter is set to "IDMT" and the "Delay characteristic" parameter is set to "Param".
В	0.00005.0000	0.0001	0.1850	Defines the Constant B for IEC/IEEE characteristics. This setting is active and visible when the "Delay type" parameter is set to "IDMT" and the "Delay characteristic" parameter is set to "Param".
С	0.0000250.0000	0.0001	0.0200	Defines the Constant C for IEEE characteristics. This setting is active and visible when the "Delay type" parameter is set to "IDMT" and the "Delay characteristic" parameter is set to "Param".

	IEEE/ANSI					
$t = \frac{kA}{\left(\frac{I_m}{I_{set}}\right)^B}$	$t = k \left(\frac{A}{\left(\frac{I_m}{I_{set}}\right)^C - 1} + B \right)$					
t = Operating delay(s)			t = Operating delay (s)			
<i>k</i> = Time dial setting			<i>k</i> = Time dial setting			
<i>I_m</i> = Measured maximum curr	ent		<i>I_m</i> = Measured maximum	n current		
<i>I_{set}</i> = Pick-up setting			I _{set} = Pick-up setting			
A = Operating characteristics	constant		A = Operating characteristics constant			
B = Operating characteristics			B = 0 perating characteristics constant			
				stics cons	tant	
Standard delays IEC constants	5		Standard delays ANSI co	nstants		
Туре	Α	В	Туре	Α	В	С
Normally Inverse (<i>NI</i>)	0,14	0,02	Normally Inverse (NI)	8,934	0,1797	2,094
Extremely Inverse (EI)	80	2	Very Inverse (VI)	3,922	0,0982	2
Very Inverse (VI)	13,5	1	Extremely Inverse (EI)	5,64	0,02434	2
Long Time Inverse (LTI)	120	1	Long Time Inverse (LTI)	5,614	2,186	1
			Standard delays IEEE co Type			
				A	В	С
			Moderately Inverse (<i>MI</i>)	0,0515	0,114	0,02
	Very Inverse (VI)	19,61	0,491	2		
			Extremely Inverse (EI)	28,2	0,1217	2

Figure. 4.4.1 - 28. Inverse operating time formulas for IEC and IEEE standards.

Non-standard delay characteristics

In addition to the previously mentioned delay characteristics, some functions also have delay characteristics that deviate from the IEC or IEEE standards. These functions are the following:

- overcurrent stages
- residual overcurrent stages
- directional overcurrent stages
- directional residual overcurrent stages.

The setting parameters and their ranges are documented in the chapters of the respective function blocks.

Table. 4.4.1 - 49. Inverse operating time formulas for nonstandard characteristics.

RI-type	RD-type
Used to get time grading with mechanical relays.	Mostly used in earth fault protection which grants selective tripping even in non- directional protection. NOTE: when "k" has been set lower than 0.3 calculated operation time can be lower than 0 seconds with some measurement values. In these cases operation time will be instant.
$t = \frac{k}{0.339 - 0.236 * \frac{I_{set}}{I_m}}$	$t = 5.8 - 1.35 * \ln\left(\frac{I_m}{k * I_{set}}\right)$

RI-type	RD-type
 t = Operating delay (s) k = Time dial setting I_m = Measured maximum current I_{set} = Pick-up setting 	t = Operating delay (s) k = Time dial setting I _m = Measured maximum current I _{set} = Pick-up setting

NOTICE!

i

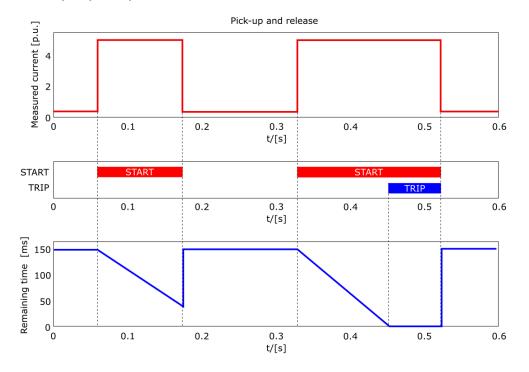

When using RD-type and "k" has been set lower than 0.3 calculated operation time can be lower than 0 seconds with some measurement values. In these cases operation time will be instant.

Table. 4.4.1 - 50. Setting parameters for reset time characteristics.

Name	Range	Step	Default	Description
Delayed pick-up release	• No • Yes	-	Yes	Resetting characteristics selection (either time-delayed or instant) after the pick-up element is released. If activated, the START signal is reset after a set release time delay.
Release time delay	0.000150.000s	0.005s	0.06s	Resetting time. The time allowed between pick-ups if the pick-up has not led into a trip operation. If the "Delayed pick-up release" setting is active, the START signal is held on for the duration of the timer.
Op.Time calculation reset after release time	• No • Yes	-	Yes	Operating timer resetting characteristics selection. When active, the operating time counter is reset after a set release time if the pick-up element is not activated during this time. When disabled, the operating time counter is reset directly after the pick-up element is reset.
Continue time calculation during release time	• No • Yes	-	No	Time calculation characteristics selection. If activated, the operating time counter continues until a set release time even if the pick-up element is reset.

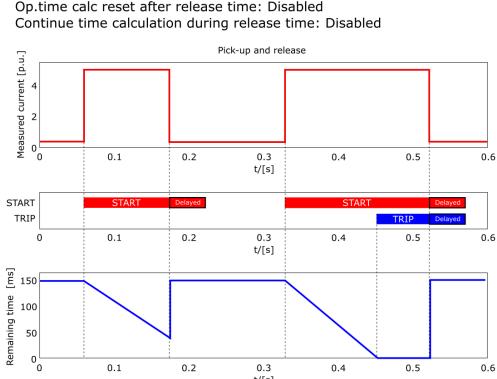

The behavior of the stages with different release time configurations are presented in the figures below.

Figure. 4.4.1 - 29. No delayed pick-up release.

Delayed pick-up release: Disabled

Figure. 4.4.1 - 30. Delayed pick-up release, delay counter is reset at signal drop-off.

0.3

t/[s]

0.4

0.5

Delayed pick-up release: Enabled Op.time calc reset after release time: Disabled

0.1

0.2

© Arcteg Relays Ltd IM00035

0.6

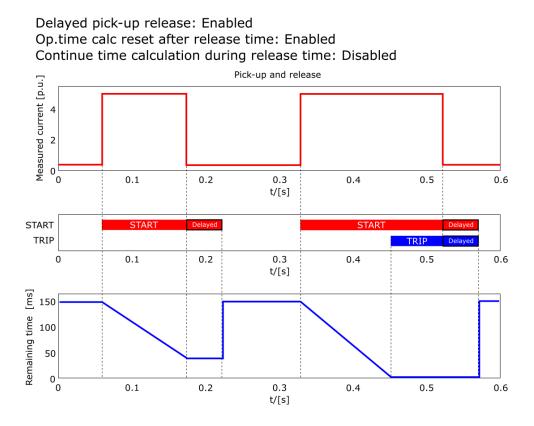
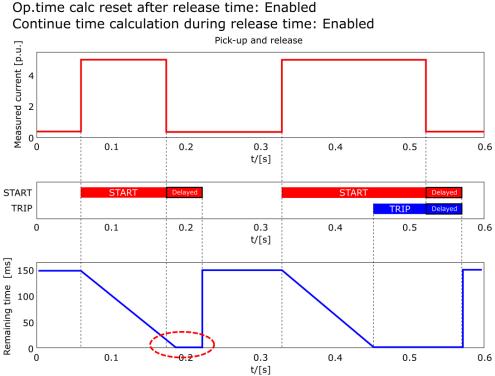



Figure. 4.4.1 - 32. Delayed pick-up release, delay counter value is decreasing during the release time.

Delayed pick-up release: Enabled Op.time calc reset after release time: Enabled

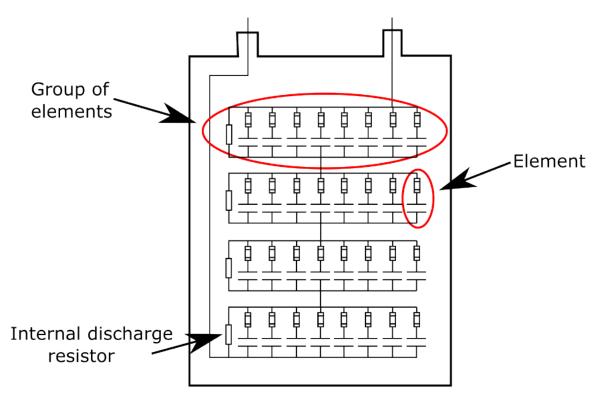
The resetting characteristics can be set according to the application. The default setting is delayed 60 ms and the time calculation is held during the release time.

When using the release delay option where the operating time counter is calculating the operating time during the release time, the function will not trip if the input signal is not activated again during the release time counting.

Stage forcing

It is possible to test the logic, event processing and the operation of the device's logic by controlling the state of the protection functions manually without injecting any current into the device with stage forcing. To enable *Stage forcing* set the *Enable stage forcing* to ENABLED in the *General* menu. After this it is possible to control the status of a protection function (Normal, Start, Trip, Blocked etc.) in the *Info* page of the function.

NOTICE!


When *Stage forcing* is enabled protection functions will also change state through user input. Injected currents/voltages also affect the behavior of the device. Regardless, it is recommended to disable *Stage Forcing* after testing has ended.

4.4.2 Capacitor bank module

Capacitor banks are commonly used to improve the quality of the electrical supply and the efficient operation of the power system. The main purpose of the installation is to provide capacitive compensations and power factor corrections.

A capacitor unit is built up of individual capacitor elements connected in parallel, and arranged in groups that are connected in series. The capacitor unit also has an internal discharge resistor that reduces the unit's residual voltage. Capacitor banks are common in medium-voltage networks and their size can be up to 1 Mvar.

Figure. 4.4.2 - 33. The capacitor unit.

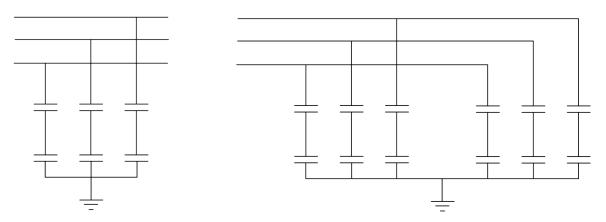
Capacitor units should be suitable for continuous operation at up to 135 % of the rated reactive power caused by the combined effects of:

- Voltage that is higher than the name plate rating at the fundamental frequency, but not over 110 % of the rated RMS voltage.
- Harmonic voltages that are superimposed on the fundamental frequency.
- Reactive power manufacturing tolerance that is up to 115 % of the rated reactive power.

Capacitor bank protection

The use of fuses for protecting the capacitor unit is an important subject in the design of capacitor banks. The fuse design affects the unit's failure mode and influences the design of the bank protection. The capacitor unit can be externally or internally fused. An external fuse protects each capacitor unit, whereas an internal fuse protects each individual capacitor element inside the capacitor unit. When a capacitor element failure occurs in an internally fused capacitor bank, the fuse only removes the affected element. The other elements, connected in parallel in the same group, remain in service but with a slightly higher voltage across them.

Wye-connected banks


Wye capacitor banks are composed of capacitor units connected in series and in parallel per phase. When the wye is earthed, it provides a low-impedance path to earth.

An earthed, wye-connected capacitor bank has the following advantages:

- A low-impedance path to earth provides inherent self-protection against lightning surge currents and give some protection against surge voltages.
- It offers a low-impedance path for high-frequency currents, and therefore the bank can be used as a filter in systems with a high harmonic content.
- Reduced transient recovery voltages for circuit breakers and other switching equipment.

There are, however, some drawbacks to earthed, wye-connected capacitor banks. The circulation of inrush currents and harmonics may cause a misoperation in the protection relay and the fuses. Unearthed wye banks do not allow zero sequence currents, third harmonic currents or large capacitor discharge currents during system earth faults to flow.

Figure. 4.4.2 - 34. Earthed wye shunt capacitor banks.

When a capacitor bank becomes too large, the bank can be split into two wye sections. With two earthed, wye-connected banks the failure of an element appears as an unbalance in the neutral. Residual current measurement with a cable core transformer in the wye section provides a more sensitive and accurate protection than a voltage-based protection.

Delta and H-connected banks

Delta-connected banks are generally used only at distribution voltages and are configured with a single series group of capacitors rated at line-to-line voltage. With only one series group of units unbalance detection is not required for protection.

Some larger banks use an H configuration in each phase, with a current transformer connecting the two legs to compare the current down each leg. When a capacitor fuse operates, some current flows through the current transformer. This arrangement is used in large banks with many capacitor units vonnected in parallel.

Protection

A capacitor bank is normally protected with unbalance protection to provide an alarm or a trip during individual fuse failures as well as to protect the bank against overcurrent. Removing a failed capacitor element or unit by its fuse results in an increased voltage across the remaining elements or units, which causes an unbalance within the bank. A continuous overvoltage (= above 1.1 p.u.) on any unit is prevented by protection relays that trip the bank.

Unbalance protection normally provides the primary protection against arcing faults within a capacitor bank as well as against other abnormalities that may damage the capacitor elements or units. Arcing faults can cause substantial damage in a small fraction of a second. Unbalance protection should have a minimum intentional delay to minimize the amount of damage done to the bank in the event of external arcing.

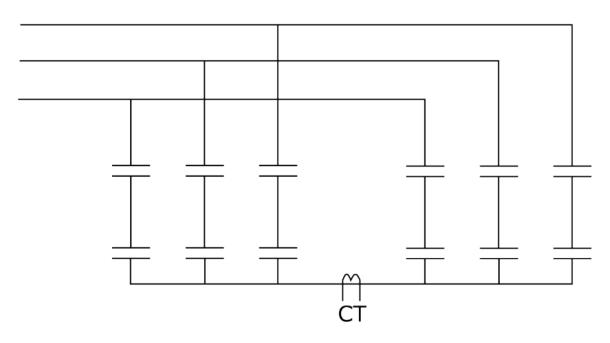


Figure. 4.4.2 - 35. Unbalance measurement and natural unbalance compensation.

Natural unbalance compensation

In practice, the unbalance seen by an unbalance protection function is the result of losing individual capacitor units (or elements) and of the inherent system and bank unbalances. The primary unbalance, which exists on all capacitor bank installations (with or without fuses), is due to the system voltage unbalance and to capacitor manufacturing tolerances. Secondary unbalance errors are introduced by sensing device tolerances and variation as well as by relative changes in capacitance due to the difference in capacitor unit temperatures in the bank. If the inherent unbalance error approaches 50 % of the alarm setting, there needs to be compensation so that the protection relay alarms as specified when a unit or an element fails.

Please note that harmonic voltages and currents can influence the operation of the unbalance protection function unless a power frequency band-pass or other appropriate filtering is provided.

About the operating time

The time delay of the unbalance protection function trip should be minimized to reduce damage from an arcing fault within the bank's structure as well as to prevent the remaining capacitor units' exposure to overvoltage conditions beyond their permissible limits.

The unbalance protection function should have enough time delay to avoid false operations due to inrush, to system earth faults, to switching of nearby equipment, and to non-simultaneous pole operation of the energizing switch. For most applications, 0.1 s should be adequate. For unbalance protection systems that would operate on a system voltage unbalance, a delay slightly longer than the upstream protection fault clearing time is required to avoid tripping due to a system fault. Longer delays increase the probability of bank failures.

4.4.3 Capacitor bank overload protection (Icol>; 49OL)

Capacitor bank overload protection is used for overload alarming and capacitor bank protection. The main difference to the overcurrent protection function is the possibility to freely program the capacitor overload curve to the function by giving the current or time points to the function or the IDMT formula coefficients.

The following figure presents a simplified function block diagram of the capacitor bank overload function.

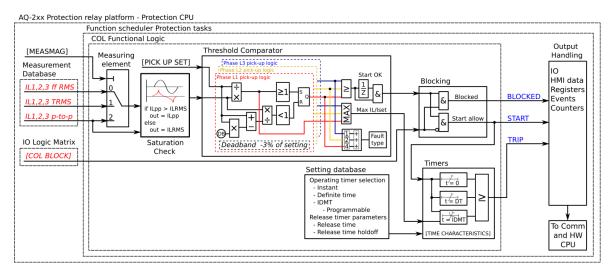


Figure. 4.4.3 - 36. Simplified function block diagram of the lcol> function.

Measured input

The function block uses phase current measurement values. The user can select the monitored magnitude to be equal either to RMS values (fundamental frequency component), to TRMS values from the whole harmonic specter of 32 components, or to peak-to-peak values.

Table. 4.4.3 - 51. Measurement inputs of the Icol> function.

Signal	Description	Time base
I _{L1} RMS	Fundamental frequency component of phase L1 (A) current	5ms

Signal	Description	Time base
IL2RMS	Fundamental frequency component of phase L2 (B) current	5ms
IL3RMS	Fundamental frequency component of phase L3 (C) current	5ms
I _{L1} TRMS	TRMS measurement of phase L1 (A) current	5ms
I _{L2} TRMS	TRMS measurement of phase L2 (B) current	5ms
I _{L3} TRMS	TRMS measurement of phase L3 (C) current	5ms
I _{L1} PP	Peak-to-peak measurement of phase L1 (A) current	5ms
I _{L2} PP	Peak-to-peak measurement of phase L2 (B) current	5ms
I _{L3} PP	Peak-to-peak measurement of phase L3 (C) current	5ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Name	Range	Default	Description
ICOL> (49OL) LN mode	 On Blocked Test Test/ Blocked Off 	On	Set mode of COL block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
ICOL> (49OL) force status to	NormalStartTripBlocked	Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
Measured magnitude	 RMS TRMS Peak- to-peak	RMS	Defines which available measured magnitude is used by the function.

Pick-up setting

The l_{set} setting parameter controls the pick-up of the lcol> function. This defines the maximum allowed measured current before action from the function. The function constantly calculates the ratio between the l_{set} and the measured magnitude (l_m) for each of the three phases. The reset ratio of 97 % is built into the function and is always relative to the l_{set} value. The setting value is common for all measured phases, and when the l_m exceeds the l_{set} value (in single, dual or all phases) it triggers the pick-up operation of the function.

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running. Table. 4.4.3 - 53. Pick-up settings.

Name	Range	Step	Default	Description
I _{set}	0.1050.00×In	0.01×I _n	1.20×I _n	Pick-up setting

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Name	Range	Step	Description
ICOL> (49OL) LN behaviour	 On Blocked Test Test/Blocked Off 	-	Displays the mode of COL block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
ICOL> (49OL) condition	NormalStartTripBlocked	-	Displays status of the protection function.
Expected operating time	-1800.0001800.000s	0.005s	Displays the expected operating time when a fault occurs. When IDMT mode is used, the expected operating time depends on the measured highest phase current value. If the measured current changes during a fault, the expected operating time changes accordingly.
Time remaining to trip	0.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
I _{meas} /I _{set} at the moment	0.001250.00	0.01	The ratio between the highest measured phase current and the pick-up value.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. Additionally, the capacitor bank overload function includes an internal inrush harmonic blocking option which is applied according to the parameters set by the user. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

Name	Range	Step	Default	Description
Inrush harmonic blocking (internal-only trip)	• No • Yes	-	No	Enables and disables the 2 nd harmonic blocking.

Name	Range	Step	Default	Description
2 nd harmonic blocking limit (lharm/lfund)	0.1050.00%l _{fund}	0.01%l _{fund}	0.01%l _{fund}	Defines the limit of the 2 nd harmonic blocking.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

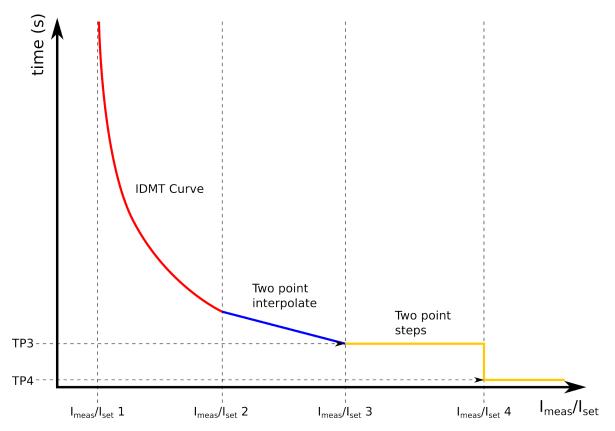
The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

This function supports definite time delay (DT) and inverse definite minimum time delay (IDMT) with user-programmable characteristics.

Name	Range	Step	Default	Description
lm/lset / t curvepoints	210	1	2	Defines the programmable measured current or the set current versus the expected operating time points.
Point 1(9) – 2(10) characteristics	 Two point steps Two point interpolate IDMT curve 	-	Two point steps	Defines the operating time calculation between the set current points.
Imeas / Iset point 110	1.0040.00xln	0.01xln	1.00xln	Defines the first current point of the curve.
Time point 110	0.0053600.000s	0.01s	1.00s	Defines the first time point of the curve.
Time dial setting k 1(9) – 2(10)	0.0125.00	0.01	1.00	Defines the time multiplier setting for the IDMT curve. Note that this setting is only visible when the "Point 1(9)–2(10) characteristics" setting is set to "Two point steps" or "Two point interpolate".
IDMT Const A 1(9) – 2(10)	0.0125.00	0.01	1.00	Defines the IDMT constant A. Note that this setting is only visible when the "Point 1(9)–2(10) characteristics" setting is set to "Two point steps" or "Two point interpolate".
IDMT Const B 1(9) – 2(10)	0.0125.00	0.01	1.00	Defines the IDMT constant B. Note that this setting is only visible when the "Point 1(9)–2(10) characteristics" setting is set to "Two point steps" or "Two point interpolate".
IDMT Const C 1(9) – 2(10)	0.0125.00	0.01	1.00	Defines the IDMT constant C. Note that this setting is only visible when the "Point 1(9)–2(10) characteristics" setting is set to "Two point steps" or "Two point interpolate".

Table. 4.4.3 - 56. Icol> operating time setting.


Name	Range	Step	Default	Description
Operating curve test (online)	1.0040.00	0.01	1.00	Allows the testing of the expected operating time with the given I _{meas} /I _{set} value with an online relay.

The IDMT curve formula used to calculate the segment timing behaviour is shown below:

$$t = k \left(\frac{A}{\left(\frac{I_m}{I_{set}}\right)^B - 1} + C \right)$$

Below is an example of the programmable curve settings with three separate operating time segments.

- 1. RED: I_{meas}/I_{set} = 1.0...2.0, IDMT IEC-NI, time dial k = 0.05, IDMT constant A = 0.14, IDMT constant B = 0.02, IDMT constant C = 0.0001.
- 2. BLUE: Imeas/Iset = 2.0...3.0, two point interpolate, time point = 3
- 3. YELLOW: I_{meas}/I_{set} = 3.0...5.0, definite time step, the set 3.0 s is held until the I_{meas}/I_{set} ratio reaches 5.0, and after that the time point = 4 is used with the time setting 0.1 s.

The programmable operating curve allows the user to freely program the timing behaviour of the protection stage with current or time points, either with step or two-point interpolated time calculation. When the modelled curve formula is known, it is advisable to use the curve parameters to achieve maximum accuracy.

Events and registers

The capacitor bank overload function (abbreviated "COL" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The function offers two (2) independent stages; the events are segregated for each stage operation. The events triggered by the function are recorded with a time stamp.

The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

	Table.	4.4.3 -	57.	Event messages.
--	--------	---------	-----	-----------------

Event block name	Event names
COL1COL2	Start On
COL1COL2	Start OFF
COL1COL2	Trip ON
COL1COL2	Trip OFF
COL1COL2	Block ON
COL1COL2	Block OFF

The function registers its operation into the last twelve (12) time-stamped registers; this information is available for all provided instances separately. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Name	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
Fault type	L1-EL1-L2-L3
Pre-trigger current	Start/trip -20 ms current
Fault current	Start/Trip current
Pre-fault current	Start -200 ms current
Trip time remaining	01800 s
Setting group in use	Setting group 18 active.

Table. 4.4.3 - 58. Register content.

4.4.4 Capacitor bank neutral unbalance protection (Cnu>; 50UB)

The following figure presents a simplified function block diagram of the capacitor bank neutral unbalance function.

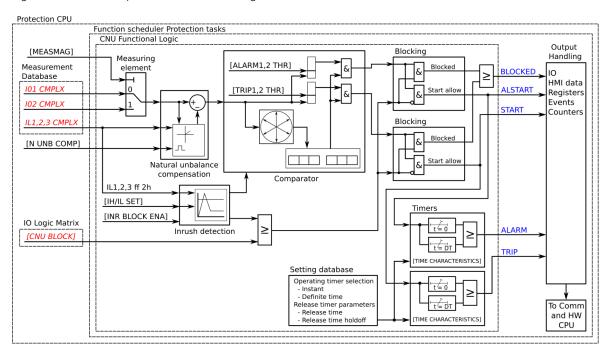


Figure. 4.4.4 - 37. Simplified function block diagram of the Cnu> function.

Measured input

The function block uses current measurement values from the residual current inputs I_{01} and I_{02} as well as the three phase current measurement inputs. In the configuration of the function can be selected which of the measurement inputs are used for the unbalance current measurement.

Signal	Description	Time base
IL1 CMPLX	The complex vector of I_{L1} (A) current measurement	5ms
IL2 CMPLX	The complex vector of IL2 (B) current measurement	5ms
IL3 CMPLX	The complex vector of I_{L3} (C) current measurement	5ms
I ₀₁ CMPLX	The complex vector of I ₀₁ current measurement	5ms
I02 CMPLX	The complex vector of I ₀₂ current measurement	5ms

General settings

The following general settings define the general behaviour of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 4.4.4 - 59. General settings of the function	Table.	4.4.4 - 5	59. Gener	al settings	of the	function
---	--------	-----------	-----------	-------------	--------	----------

Name	Range	Default	Description
CNU> (50UB) LN mode	 On Blocked Test Test/ Blocked5: Off 	On	Set mode of CNU block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.

Name	Range	Default	Description
CNU> (50UB) force status to	 Normal Alarm Start Alarm On Trip Start Trip On Blocked On 	Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
Natural unbalance compensation	Not usedIn use	Not used	Selects whether the natural unbalance compensation is used. When the compensation is in use, you can give the function more sensitive settings. When the compensation is not in use, the natural unbalance can cause the function to operate either too sensitively or too coarsely (depends on which side of the capacitor bank has more natural unbalance).
Compensate natural unbalance	-Compensate	-	Defines a triggering parameter which is activated during the function's commissioning on the energized capacitor bank. The parameter is self-resetting and it returns to "-" after user input and natural unbalance compensations are made.
Unbalance input select	• 101 • 102	101	Selects the unbalance current measurement input.

Pick-up settings

The l_{set} setting parameter controls the pick-up of the Cnu> function. This defines the maximum allowed measured current before action from the function. The function constantly calculates the ratio between the l_{set} and the measured magnitude (I_m) for each of the three phases. The reset ratio of 97 % is built into the function and is always relative to the l_{set} value. The setting value is common for all measured phases, and when the I_m exceeds the l_{set} value (in single, dual or all phases) it triggers the pick-up operation of the function.

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

Name	Range	Step	Default	Description
Capacitor bank configuration	 Identical banks Bank size differs 	-	ldentical banks	Selects whether the capacitor banks are identical in both sides. When the banks are identical, only one pick-up setting is required for both sides. When the sides are different in size, the settings can be made for each bank separately within the bank characteristics and manufacturer limitations.
Count fuse operations per side for action	 No, only current Yes, fuses or current 	-	No, only current	Selects whether the fuse operations are counted per side and per phase in addition to the unbalance current monitoring.
Pick-up setting I _{set} alarm	0.1050.00×In	0.01×ln	0.1×ln	Defines the pick-up threshold for the alarm signal. Monitors the unbalance current value.

Table. 4.4.4 - 60. Pick-up settings.

Name	Range	Step	Default	Description
Pick-up setting for fuse operations alarm	150 fuses	1 fuse	3 fuses	Defines the pick-up threshold per side for counted fuse operations. Please note that this setting requires that the "Count fuse operations per side for action" parameter is set to "Yes, fuses or current".
Pick-up setting I _{set} alarm, side 2	0.1050.00×In	0.01×In	0.1×ln	Defines the threshold for the alarm signal on Side 2. Monitors the unbalance current value. Please note that this setting requires that the "Capacitor bank configuration" parameter is set to "Bank size differs".
Pick-up setting for fuse operations alarm, side 2	150 fuses	1 fuse	3 fuses	Defines the pick-up threshold per side for counted fuse operations for side 2. Please note that this setting requires that the "Count fuse operations per side for action" parameter is set to "Yes, fuses or current" as well as that the "Capacitor bank configuration" parameter is set to "Bank size differs".
Definite operating time delay for alarm	01800.000s	0.005s	5.000s	Defines the definite time delay between the pick-up terms being met and issuing an alarm signal.
Definite operating time delay for alarm, side 2	01800.000s	0.005s	5.000s	Defines the definite time delay for side 2 between the pick- up terms being met and issuing an alarm signal. Please note that this setting requires that the "Capacitor bank configuration" parameter is set to "Bank size differs".
Pick-up setting I _{set} trip	0.1050.00×In	0.01×ln	0.2×In	Defines the pick-up threshold for the trip signal. Monitors the unbalance current value.
Pick-up setting for fuse operations trip	150 fuses	1 fuse	5 fuses	Defines the pick-up threshold per side for counted fuse operations. Please note that this setting requires that the "Count fuse operations per side for action" parameter is set to "Yes, fuses or current".
Pick-up setting Iset trip, side 2	0.1050.00×In	0.01×In	0.2×In	Defines the pick-up threshold for the trip signal for side 2. Monitors the unbalance current value. Please note that this setting requires that the "Capacitor bank configuration" parameter is set to "Bank size differs".
Pick-up setting for fuse operations trip, side 2	150 fuses	1 fuse	5 fuses	Defines the pick-up threshold per side for counted fuse operations for side 2. Please note that this setting requires that the "Count fuse operations per side for action" parameter is set to "Yes, fuses or current" as well as that the "Capacitor bank configuration" parameter is set to "Bank size differs".

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Table. 4.4.4 - 61. Information displayed by the function.

Name	Range	Step	Description
CNU> (50UB) LN behaviour	 On Blocked Test Test/Blocked Off 	-	Displays the mode of CNU block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
Measured unbalance current	0.0050.00 A	0.01 A	Unbalance current in amperes.
Unbalance current angle	-360.00360.00 deg	0.01 deg	Unbalance current angle.
CNU> (50UB) condition	NormalStartTripBlocked	-	Displays status of the protection function.
Expected Alarm time	-1800.0001800.000s	0.005s	Displays the expected time to alarm when a fault occurs. When IDMT mode is used, the expected operating time depends on the current unbalance value. If the measured current changes during a fault, the expected operating time changes accordingly.
Time remaining to Alarm	0.0001800.000s	0.005s	When the function has detected a fault and counts down time towards an alarm, this displays how much time is left before tripping occurs.
I _{meas} /I _{set} Alarm at the moment	0.001250.00	0.01	The ratio between the highest measured current unbalance and the pick-up value.
Expected operating time	-1800.0001800.000s	0.005s	Displays the expected operating time when a fault occurs. When IDMT mode is used, the expected operating time depends on the current unbalance. If the measured current changes during a fault, the expected operating time changes accordingly.
Time remaining to trip	0.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
I _{meas} /I _{set} Trip at the moment	0.001250.00	0.01	The ratio between the current unbalance and the pick-up value.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. Additionally, the capacitor bank neutral unbalance function includes an internal inrush harmonic blocking option which is applied according to the parameters set by the user. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

Table. 4.4.4 - 62. Internal inrush harmonic blocking settings.

Name	Range	Step	Default	Description
Inrush harmonic blocking (internal-only trip)	• No • Yes	-	No	Enables and disables the 2 nd harmonic blocking.
2 nd harmonic block limit (Iharm/lfund)	0.1050.00%l _{fund}	0.01%l _{fund}	0.01%l _{fund}	Defines the limit of the 2 nd harmonic blocking.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pickup signal is reset.

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for reset

This function supports definite time delay (DT) time characteristics for alarm and trip time counters. For detailed information on the programmable reset behavior of the function please refer to the chapter "General properties of a protection function" and its section "Operating time characteristics for trip and reset".

Events and registers

The capacitor bank neutral unbalance function (abbreviated "CNU" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The function offers one (1) independent stage. The events triggered by the function are recorded with a time stamp.

The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a resettable cumulative counter for the ALARM START, ALARM, START, TRIP and BLOCKED events.

Event block name	Event names
CNU1	Alarm Start ON
CNU1	Alarm Start OFF
CNU1	Alarm ON
CNU1	Alarm OFF
CNU1	Start ON
CNU1	Start OFF
CNU1	Trip ON
CNU1	Trip OFF
CNU1	Unbalance detected Bank A ON

Table. 4.4.4 - 63. Event messages.

4 Functions

Version: 2.12

Event block name	Event names	
CNU1	Unbalance detected Bank A OFF	
CNU1	Unbalance detected Bank B ON	
CNU1	Unbalance detected Bank B OFF	
CNU1	Compensating natural unbalance ON	
CNU1	Compensating natural unbalance OFF	

The function registers its operation into the last twelve (12) time-stamped registers; this information is available for all provided instances separately. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 4.4.4 - 64. Register content.

Name	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
Fault side	А, В
Unbalance current	Measured unbalance current
Fuse operations A	Number if fuses operated
Fuse operations B	Number of fuses operated
Trip time remaining	01800 s
Setting group in use	Setting group 18 active.

4.4.5 Capacitor bank current unbalance protection (luc>; 46C)

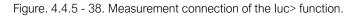
The capacitor bank current unbalance protection is used in protecting the capacitor bank with a double wye configuration. The operating decisions are based on phase current magnitudes which the function constantly measures.

Measured input

The function block uses fundamental frequency component of phase current measurement channels.

Signal	Description	Time base
I _{L1} RMS	Fundamental frequency component of phase L1 (A) current measurement	5ms
IL2RMS	Fundamental frequency component of phase L2 (B) current measurement	5ms
IL3RMS	Fundamental frequency component of phase L3 (C) current measurement	5ms

Table. 4.4.5 - 65. Measurement inputs of the luc> function.


General settings

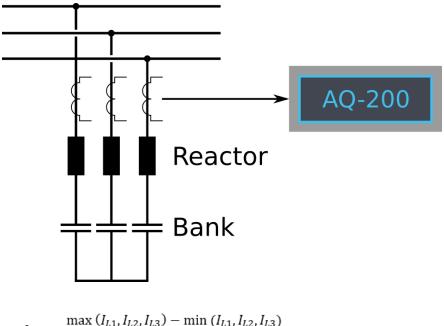

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table	445-	66	General	settinas	of the	function.
Table.	4.4.0 -	00.	Oeneral	setunys		Turiction.

Name	Range	Default	Description
IUC> LN mode	 On Blocked Test Test/ Blocked Off 	On	Set mode of UCP block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
IUC> force status to	 Normal Blocked StartAlarm Alarm StartTrip Trip 	Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.

Pick-up settings

 $I_{unb} = \frac{\max{(I_{L1}, I_{L2}, I_{L3})} - \min{(I_{L1}, I_{L2}, I_{L3})}}{\max{(I_{L1}, I_{L2}, I_{L3})}}$

The protection function uses a formula which takes the highest measured value of the phase's current, then subtracts from this value the lowest measured value of the phase's current, and finally divides the result with the mean of all phases. This value is then compared to the *lset Alarm* and the *lset Trip* parameters. The function constantly calculates the ratio between the *lset* and the calculated magnitude (*lunb*). The reset ratio of 97 % is built into the function and is always relative to the *lset* value.

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

Name	Range	Step	Default	Description
Iset Alarm	0.1050.00×I _n	0.01×In	1.20×I _n	Defines the pick-up setting for the alarm.
Iset Trip	0.1050.00×I _n	0.01×I _n	1.20×I _n	Defines the pick-up setting for the trip.
Definite time delay alarm	0.0001 800.00s	0.005s	0.04s	Defines the definite time delay for the ALARM signal.
Definite time delay trip	0.0001 800.00s	0.005s	0.04s	Defines the definite time delay for the TRIP signal.

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Name	Range	Step	Description
IUC> LN behaviour	 On Blocked Test Test/Blocked Off 	-	Displays the mode of UCP block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
IUC> condition	 Normal Blocked StartOn(Alarm) StartOn(Alarm&Trip) StartOn(Trip) AlarmOn StartOn StartOn,AlarmOn TripOn AlarmOn,TripOn MultistatusOn 	-	Displays status of the protection function.
Expected time to Alarm	-1800.0001800.000s	0.005s	Displays the expected time to alarm when a fault occurs.
Time remaining to Alarm	0.0001800.000s	0.005s	When the function has detected a fault and counts down time towards an alarm, this displays how much time is left before tripping occurs.
I _{meas} /I _{set} Alarm at the moment	0.001250.00	0.01	The ratio between the highest measured current unbalance and the pick-up value.

Name	Range	Step	Description
Expected time to Trip	-1800.0001800.000s	0.005s	Displays the expected operating time when a fault occurs. When IDMT mode is used, the expected operating time depends on the measured highest phase current value. If the measured current changes during a fault, the expected operating time changes accordingly.
Time remaining to trip	0.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
I _{meas} /I _{set} at the moment	0.001250.00	0.01	The ratio between the highest measured phase current and the pick-up value.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. Additionally, the function includes an internal inrush harmonic blocking option which is applied according to the parameters set by the user. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

Table. 4.4.5 - 69. Internal inrush harmonic blocking settings.

Name	Range	Step	Default	Description
Inrush harmonic blocking (internal-only trip)	NoYes	-	No	Enables and disables the 2 nd harmonic blocking.
2 nd harmonic blocking limit (Iharm/Ifund)	0.1050.00%l _{fund}	0.01%l _{fund}	20.00%l _{fund}	Defines the limit for the 2 nd harmonic blocking.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal will be generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Events and registers

The capacitor bank current unbalance protection function (abbreviated "UCP" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The function offers one (1) independent stage. The events triggered by the function are recorded with a time stamp.

The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a resettable cumulative counter for the ALARM START, ALARM, START, TRIP and BLOCKED events.

Table. 4.4.5 - 70. Event messages.

Event block name	Event names
UCP1	Alarm Start ON
UCP1	Alarm Start OFF
UCP1	Alarm ON
UCP1	Alarm OFF
UCP1	Start ON
UCP1	Start OFF
UCP1	Trip ON
UCP1	Trip OFF
UCP1	Block ON
UCP1	Block OFF
UCP1	Harmonic block ON
UCP1	Harmonic block OFF

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 4.4.5 - 71. Register content.

Name	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
Pre-trigger current	Start/Trip -20 ms current
Fault current	Start/Trip current
Prefault current	Start -200ms current
Meas/AL set	The ratio between the measurement & the alarm setting
Meas TR/set	The ratio of the measurement & the trip setting
Trip time remaining	0 ms1800s
Setting group in use	Setting group 18 active.

4.4.6 Non-directional overcurrent protection (I>; 50/51)

The non-directional overcurrent function is used for instant and time-delayed overcurrent and shortcircuit protection. The function is used for one-phase, two-phase or three-phase overcurrent and short circuit protection. The function offers four (4) independent stages. The operating decisions are based on phase current magnitude, constantly measured by the function.

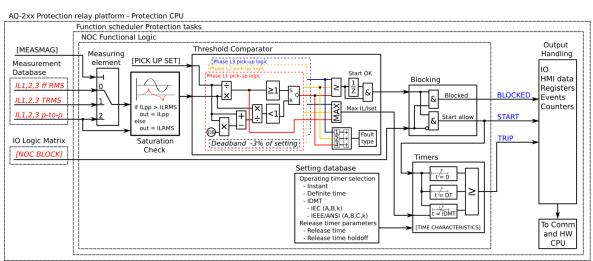


Figure. 4.4.6 - 39. Simplified function block diagram of the I> function.

Measured input

The function block uses phase current measurement values. The user can select the monitored magnitude to be equal either to RMS values (fundamental frequency component), to TRMS values from the whole harmonic specter of 32 components, or to peak-to-peak values.

Table. 4.4.6 - 72. Measurement inputs of the I> function.

Signal	Description	Time base
I _{L1} RMS	Fundamental frequency component of phase L1 (A) current measurement	5ms
I _{L2} RMS	Fundamental frequency component of phase L2 (B) current measurement	5ms
IL3RMS	Fundamental frequency component of phase L3 (C) current measurement	5ms
IL1TRMS	TRMS measurement of phase L1 (A) current	5ms
IL2TRMS	TRMS measurement of phase L2 (B) current	5ms
IL3TRMS	TRMS measurement of phase L3 (C) current	5ms
I _{L1} PP	Peak-to-peak measurement of phase L1 (A) current	5ms
I _{L2} PP	Peak-to-peak measurement of phase L2 (B) current	5ms
I _{L3} PP	Peak-to-peak measurement of phase L3 (C) current	5ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 4.4.6 - 73. General settings of the function.

Name	Range	Default	Description
Setting control from comm bus	DisabledAllowed	Disabled	Activating this parameter allows changing the pick-up level of the protection stage via SCADA.
I> LN mode	 On Blocked Test Test/ Blocked Off 	• On	Set mode of NOC block. This parameter is visible only when <i>Allow setting of individual</i> <i>LN mode</i> is enabled in <i>General</i> menu.
I> force status to	 Normal Start Trip Blocked Start A Start B Start C Trip A Trip C Start AB Start AB Start AB Start CA Start ABC Trip AB Trip AB Trip CA Trip ABC 	• Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
Measured magnitude	 RMS TRMS Peak-to-peak	• RMS	Defines which available measured magnitude is used by the function.

Pick-up settings

The I_{set} setting parameter controls the pick-up of the I> function. This defines the maximum allowed measured current before action from the function. The function constantly calculates the ratio between the I_{set} and the measured magnitude (I_m) for each of the three phases. The reset ratio of 97 % is built into the function and is always relative to the I_{set} value. The setting value is common for all measured phases, and when the I_m exceeds the I_{set} value (in single, dual or all phases) it triggers the pick-up operation of the function.

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

Table. 4.4.6 - 74.	Pick-up settings.
--------------------	-------------------

Name	Range	Step	Default	Description
I _{set}	0.1050.00×In	0.01×I _n	1.20×I _n	Pick-up setting

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

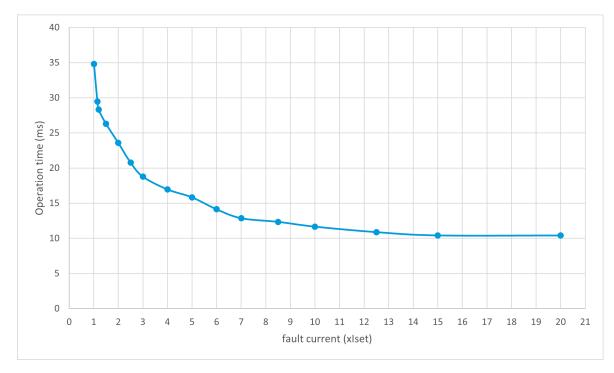
Table 1 1 6 75	Information	diaplayad	by the	function
Table. 4.4.6 - 75.	iniornation	uispiayeu	by the	iunction.

Name	Range	Step	Description
I> LN behaviour	 On Blocked Test Test/Blocked Off 	-	Displays the mode of NOC block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
l> condition	 Normal Start Trip Blocked 	-	Displays status of the protection function.
I> phases condition	 Normal Start A Start B Start C Trip A Trip C Start AB Start BC Start ABC Start ABC Trip AB Trip BC Trip ABC 	-	Displays the status of phases individually.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs. When IDMT mode is used, the expected operating time depends on the measured highest phase current value. If the measured current changes during a fault, the expected operating time changes accordingly.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
I _{meas} /I _{set} at the moment	0.001250.00	0.01	The ratio between the highest measured phase current and the pick-up value.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. Additionally, the function includes an internal inrush harmonic blocking option which is applied according to the parameters set by the user. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

Table. 4.4.6 - 76. Internal inrush harmonic blocking settings.


Name	Range	Step	Default	Description
Inrush harmonic blocking (internal-only trip)	• No • Yes	-	• No	Enables and disables the 2 nd harmonic blocking.
2 nd harmonic blocking limit (Iharm/Ifund)	0.1050.00%l _{fund}	0.01%l _{fund}	0.01%l _{fund}	Defines the limit of the 2 nd harmonic blocking.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pickup signal is reset.

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

This function supports definite time delay (DT) and inverse definite minimum time delay (IDMT). For detailed information on these delay types please refer to the chapter "<u>General properties of a protection</u> function" and its section "<u>Operating time characteristics for trip and reset</u>".

Events and registers

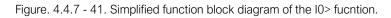
The non-directional overcurrent function (abbreviated "NOC" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

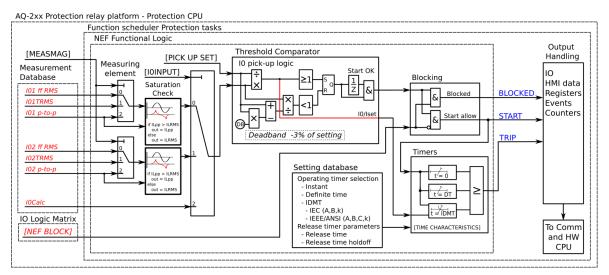
The function's output can be used for direct I/O controlling and user logic programming. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

Table. 4.4.6 - 77	'. Event messages.
-------------------	--------------------

Event block name	Event names
NOC1NOC4	Start ON
NOC1NOC4	Start OFF
NOC1NOC4	Trip ON
NOC1NOC4	Trip OFF
NOC1NOC4	Block ON
NOC1NOC4	Block OFF
NOC1NOC4	Phase A Start ON
NOC1NOC4	Phase A Start OFF
NOC1NOC4	Phase B Start ON
NOC1NOC4	Phase B Start OFF
NOC1NOC4	Phase C Start ON
NOC1NOC4	Phase C Start OFF
NOC1NOC4	Phase A Trip ON
NOC1NOC4	Phase A Trip OFF
NOC1NOC4	Phase B Trip ON
NOC1NOC4	Phase B Trip OFF
NOC1NOC4	Phase C Trip ON
NOC1NOC4	Phase C Trip OFF

The function registers its operation into the last twelve (12) time-stamped registers; this information is available for all provided instances separately. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.


Name	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
Fault type	L1-EL1-L2-L3
Pre-trigger current	Start/Trip -20ms current


Table. 4.4.6 - 78. Register content.

Name	Description
Fault current	Start/Trip current
Pre-fault current	Start -200ms current
Trip time remaining	0 ms1800s
Setting group in use	Setting group 18 active.

4.4.7 Non-directional earth fault protection (I0>; 50N/51N)

The non-directional earth fault function is used for instant and time-delayed earth fault protection. The number of stages in the function depend on the device model. The operating characteristics are based on the selected neutral current magnitude which the function measures constantly.

Measured input

The function block uses residual current measurement values. The available analog measurement channels are I_{01} and I_{02} (residual current measurement) and I_{0Calc} (residual current calculated from phase current). The user can select the monitored magnitude to be equal either to RMS values (fundamental frequency component), to TRMS values from the whole harmonic specter of 32 components, or to peak-to-peak values.

Table. 4.4.7 - 79. Measurement inputs of the IO> function.

Signal	Description	Time base
I ₀₁ RMS	Fundamental frequency component of coarse residual current measurement input I01	5 ms
I ₀₁ TRMS	TRMS measurement of coarse residual current measurement input I01	5 ms
I ₀₁ PP	Peak-to-peak measurement of coarse residual current measurement input I01	5 ms
I ₀₂ RMS	Fundamental frequency component of sensitive residual current measurement input I02	5 ms
I ₀₂ TRMS	TRMS measurement of coarse sensitive current measurement input I02	5 ms

Signal	Description	Time base
I02PP	Peak-to-peak measurement of sensitive residual current measurement input I02	5 ms
I _{0Calc}	Fundamental frequency component of the calculated zero sequence current calculated from the three phase currents	5 ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Name	Range	Default	Description
Setting control from comm bus	DisabledAllowed	Disabled	Activating this parameter permits changing the pick-up level of the protection stage via SCADA.
10> LN mode	 On Blocked Test Test/ Blocked Off 	On	Set mode of NEF block. This parameter is visible only when Allow setting of individual LN mode is enabled in General menu.
I0> force status to	NormalStartTripBlocked	Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
Measured magnitude	 RMS TRMS Peak-to-peak	RMS	Defines which available measured magnitude is used by the function. This parameter is available when "Input selection" has been set to "I01" or "I02".
Input selection	I01I02I0Calc	101	Defines which measured residual current is used by the function.

Table. 4.4.7 - 80. General settings of the function.

Pick-up settings

The IO_{set} setting parameter controls the the pick-up of the I0> function. This defines the maximum allowed measured current before action from the function. The function constantly calculates the ratio between the IO_{set} and the measured magnitude (I_m) for each of the three phases. The reset ratio of 97 % is built into the function and is always relative to the IO_{set} value. The setting value is common for all measured phases. When the I_m exceeds the IO_{set} value (in single, dual or all phases) it triggers the pick-up operation of the function.

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

Table. 4.4.7 - 81. Pick-up settings.

Name	Range	Step	Default	Description
10 _{set}	0.000140.00 × In	$0.0001 \times I_n$	1.20 × I _n	Pick-up setting

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Name	Range	Step	Description
I0> LN behaviour	 On Blocked Test Test/Blocked Off 	-	Displays the mode of NEF block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
I0> condition	NormalStartTripBlocked	-	Displays status of the protection function.
Detected I0 angle	-360.00360.00 deg	0.01 deg	Angle of I0 against reference. If phase voltages are available, positive sequence voltage angle is used as reference. If voltages are not available, positive sequence current angle is used as reference.
Detected fault type	 - A-G-R B-G-F C-G-R A-G-F B-G-R C-G-F 	-	Displays the detected fault type and direction of previous fault. "A/ B/C" stand for one of the three phases. "G" stands for "ground". "F" stands for "forward" direction and "R" stands for "reverse" direction.
Expected operating time	-1800.0001800.000 s	0.005 s	Displays the expected operating time when a fault occurs. When IDMT mode is used, the expected operating time depends on the measured current value. If the measured current changes during a fault, the expected operating time changes accordingly.
Time remaining to trip	0.0001800.000 s	0.005 s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
I _{meas} /I _{set} at the moment	0.001250.00	0.01	The ratio between the measured current and the pick-up value.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. Additionally, the function includes an internal inrush harmonic blocking option which is applied according to the parameters set by the user. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

Table. 4.4.7 - 83. Internal inrush harmonic blocking settings.

Name	Range	Step	Default	Description
Inrush harmonic blocking (internal-only trip)	• No • Yes	-	No	2 nd harmonic blocking enable/disable
2 nd harmonic block limit (Iharm/ Ifund)	0.1050.00%l _{fund}	0.01%l _{fund}	0.01%l _{fund}	2 nd harmonic blocking limit

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and processes the release time characteristics similarly to when the pick-up signal is reset.

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

This function supports definite time delay (DT) and inverse definite minimum time delay (IDMT). For detailed information on these delay types please refer to the chapter "<u>General properties of a protection</u> function" and its section "<u>Operating time characteristics for trip and reset</u>".

Events and registers

The non-directional earth fault function (abbreviated "NEF" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

The function offers four (4) independent stages; the events are segregated for each stage operation.

Event block name	Event names
NEF1NEF4	Start ON
NEF1NEF4	Start OFF
NEF1NEF4	Trip ON
NEF1NEF4	Trip OFF

Table. 4.4.7 - 84. Event messages.

Event block name	Event names
NEF1NEF4	Block ON
NEF1NEF4	Block OFF

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 4.4.7 - 85. Register content.

Name	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
Fault type	A-G-RC-G-F
Pre-trigger current	Start/Trip -20ms current
Fault current	Start/Trip current
Pre-fault current	Start -200ms current
Trip time remaining	0 ms1800s
Setting group in use	Setting group 18 active.

4.4.8 Directional overcurrent protection (Idir>; 67)

The directional overcurrent function is used for instant and time-delayed overcurrent and short-circuits. A device with both voltage and current protection modules can have four (4) available stages of the function (Idir>, Idir>>, Idir>>>, Idir>>>). The operating decisions are based on phase current magnitudes which the function constantly measures.

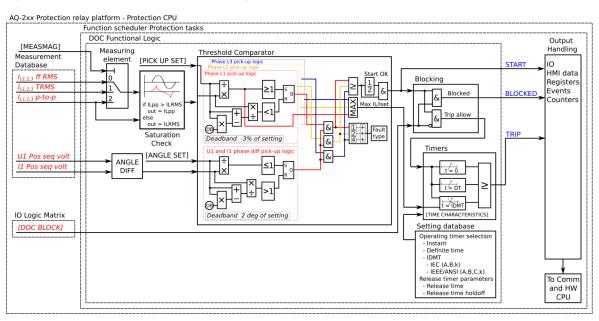


Figure. 4.4.8 - 42. Simplified function block diagram of the Idir> function.

Measured input

The function block uses phase current and voltage measurement values. The user can select the monitored current magnitude to be equal either to RMS values (fundamental frequency component), to TRMS values from the whole harmonic specter of 32 components, or to peak-to-peak values.

The fault current angle is based on the comparison between the positive sequence voltage U_1 and the positive sequence current I_1 . If the positive sequence voltage is not available (three line-to-line voltages but no U_0), the voltage angle is based on a faulty phase line-to-line voltage. If the voltage drops below 1 V in the secondary side during a fault, the voltage memory is used for 0.5 seconds. After that the reference angle of voltage is forced to 0°.

Signal	Description	Time base
I _{L1} RMS	Fundamental frequency component of phase L1 (A) current measurement	5ms
IL2RMS	Fundamental frequency component of phase L2 (B) current measurement	5ms
IL3RMS	Fundamental frequency component of phase L3 (C) current measurement	5ms
I _{L1} TRMS	TRMS measurement of phase L1 (A) current	5ms
I _{L2} TRMS	TRMS measurement of phase L2 (B) current	5ms
I _{L3} TRMS	TRMS measurement of phase L3 (C) current	5ms
I _{L1} PP	Peak-to-peak measurement of phase L1 (A) current	5ms
I _{L2} PP	Peak-to-peak measurement of phase L2 (B) current	5ms
I _{L3} PP	Peak-to-peak measurement of phase L3 (C) current	5ms
U1RMS	Fundamental frequency component of U1/V voltage measurement	5ms
U ₂ RMS	Fundamental frequency component of U2/V voltage measurement	5ms

Table. 4.4.8 - 86. Measurement inputs of the Idir> function.

Signal	Description	Time base
U3RMS	Fundamental frequency component of U ₃ /V voltage measurement	5ms
U4RMS	Fundamental frequency component of U4/V voltage measurement	5ms

General settings

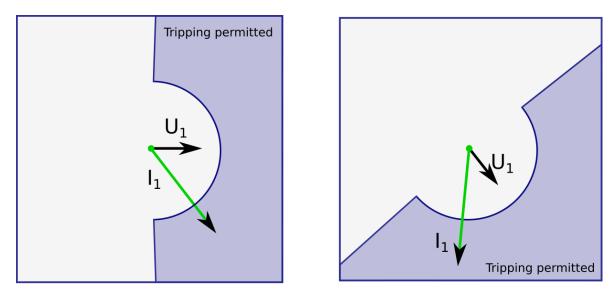
The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Name	Range	Default	Description
ldir> LN mode	 On Blocked Test Test/ Blocked Off 	On	Set mode of DOC block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
ldir> force status to	NormalStartTripBlocked	Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
Measured magnitude	 RMS TRMS Peak- to-peak	RMS	Defines which available measured magnitude is used by the function.

Pick-up settings

The *l_{set}* setting parameter controls the pick-up of the I> function. This defines the maximum allowed measured current before action from the function. The function constantly calculates the ratio between the *l_{set}* and the measured magnitude (*I_m*) for each of the three phases. The reset ratio of 97 % is built into the function and is always relative to the *l_{set}* value. The setting value is common for all measured phases, and when the *I_m* exceeds the *l_{set}* value (in single, dual or all phases) it triggers the pick-up operation of the function.

The trip characteristic can be set to directional or non-directional. In the non-directional mode only the pick-up value of the positive sequence current magnitude must be fulfilled in order for the function to trip. In the directional mode the fault must also be in the monitored direction to fulfill the terms to trip. By default, the tripping area is $\pm 88^{\circ}$ (176°). The reference angle is based on the calculated positive sequence voltage U_1 angle. If the U_1 voltage is not available and only line-to-line voltages are measured, the reference angle is based on a healthy line-to-line voltage. During a short-circuit the reference angle is based on impedance calculation.


If the voltage drops below 1 V in the secondary side, the angle memory is used for 0.5 seconds. The angle memory forces the reference angle to be equal to the value measured or calculated before the fault. The angle memory captures the measured voltage angle 100 ms before the fault starts. After 0.5 seconds the angle memory is no longer used, and the reference angle is forced to 0°. The inbuilt reset ratio for the tripping area angle is 2°.

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

Table.	4.4.8 - 88.	Pick-up settings.
--------	-------------	-------------------

Name	Range	Step	Default	Description
Characteristic direction	I ● Non-		Directional	Switches between directional and non-directional overcurrent mode.
Operating sector size (+ / -) ±1.0170.0°		0.1°	±88°	Pick-up area size in degrees.
Operating sector center	-180.0180.0°	0.1°	0°	Turns the operating sector
Pick-up setting I _{set} 0.1040.00×I _n		0.01×I _n	1.20×I _n	Pick-up setting

Figure. 4.4.8 - 43. Angle tracking of the Idir> function ($3LN/3LL + U_0 \mod e$).

Please note in the picture above that the tripping area is linked to the angle of the positive sequence voltage U_1 . The angle of the positive sequence current I_1 is compared to U_1 angle, and if the fault is in the correct direction, it is possible to perform a trip when the amplitude of I_{L1} , I_{L2} or I_{L3} increases above the pick-up limit.

If the 3LL mode is used without the U_0 measurement in a single-phase fault situation, the voltage reference comes from the healthy phase and the current reference from the faulty phase. In a short-circuit the angle comes from impedance calculation.

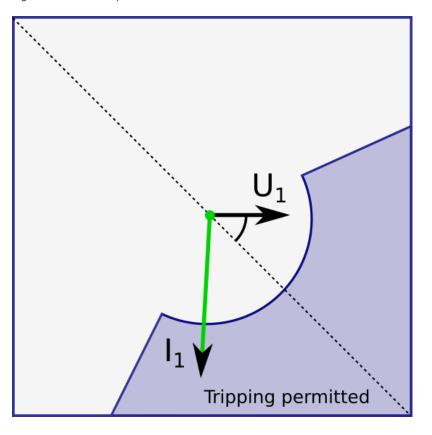
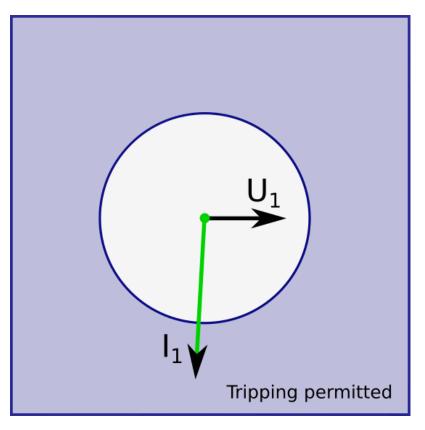



Figure. 4.4.8 - 44. Operation sector area when the sector center has been set to -45 degrees.

Figure. 4.4.8 - 45. When Idir> function has been set to "Non-directional" the function works basically just like a traditional non-directional overcurrent protection function.

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Name	Range	Step	Description
ldir> LN behaviour	 On Blocked Test Test/Blocked Off 	-	Displays the mode of DOC block. This parameter is visible only when <i>Allow setting of individual</i> <i>LN mode</i> is enabled in <i>General</i> menu.
Operating angle now	-360.00360.00deg	0.01deg	The positive sequence current angle in relation to the positive sequence voltage.
Expected operating time	0.0001800.00s	0.005s	Displays the expected operating time when a fault occurs. When IDMT mode is used, the expected operating time depends on the highest measured phase current value. If the measured current changes during a fault, the expected operating time changes accordingly.
Time remaining to trip	-1800.0001800.00s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
I _{meas} /I _{set} at the moment	0.001250.00I _m /I _{set} 0.01I _m		The ratio between the highest measured phase current and the pick-up value.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. Additionally, the function includes an internal inrush harmonic blocking option which is applied according to the parameters set by the user. When the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

Table. 4.4.8 - 90. Internal inrush harmonic blocking settings.

Name	Range	Step	Default	Description
Inrush harmonic blocking (internal-only trip)	NoYes	-	No	Enables and disables the 2 nd harmonic blocking.
2 nd harmonic blocking limit (Iharm/Ifund)		0.01%l _{fund}	0.01%l _{fund}	The 2 nd harmonic blocking limit.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, time characteristics are reset and the release time characteristics are processed similarly to when the pick-up signal is reset.

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

This function supports definite time delay (DT) and inverse definite minimum time delay (IDMT). For detailed information on these delay types please refer to the chapter "<u>General properties of a protection</u> function" and its section "<u>Operating time characteristics for trip and reset</u>".

Events and registers

The directional overcurrent function (abbreviated "DOC" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

The function offers four (4) independent stages; the events are segregated for each stage operation.

Event block name	Event names
DOC1DOC4	Start ON
DOC1DOC4	Start OFF
DOC1DOC4	Trip ON
DOC1DOC4	Trip OFF
DOC1DOC4	Block ON
DOC1DOC4	Block OFF
DOC1DOC4	No voltage, Blocking ON
DOC1DOC4	Voltage measurable, Blocking OFF
DOC1DOC4	Measuring live angle ON
DOC1DOC4	Measuring live angle OFF
DOC1DOC4	Using voltmem ON
DOC1DOC4	Using voltmem OFF

Table. 4.4.8 - 91. Event messages.

The function registers its operation into the last twelve (12) time-stamped registers; this information is available for all provided instances separately. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 4.4.8 - 92. Register content.

Register name	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
Fault type	L1-EL1-L2-L3
Pre-trigger current	Start/Trip -20ms current
Fault current	Start/Trip current
Pre-fault current	Start -200ms averages
Trip time remaining	0s1800s
Setting group in use	Setting group 18 active
Operating angle	0250°

4.4.9 Directional earth fault protection (I0dir>; 67N/32N)

The directional earth fault function is used for instant and time-delayed earth fault protection. A device with both voltage and current protection modules can have four (4) stages in the function (I0dir>, I0dir>>, I0dir>>>, I0dir>>>). The operating decisions are based on selected neutral current and voltage magnitudes which the function constantly measures.

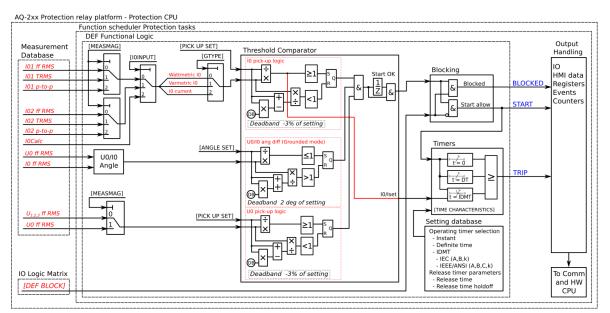


Figure. 4.4.9 - 46. Simplified function block diagram of the I0dir> function.

Measured input

The function block uses residual current measurement values and neutral voltage measurement values. The available residual current measurement channels are I₀₁ and I₀₂ (residual current measurement) and IOCalc (residual current calculated from phase current). The user can select the monitored current magnitude to be equal either to RMS values (fundamental frequency component), to TRMS values from the whole harmonic specter of 32 components, or to peak-to-peak values.

The fault current angle is based on comparing the neutral voltage U_0 angle to the residual current I_0 angle. Both I_0 and U_0 must be above the squelch limit to be able to detect the angle. The squelch limit for the I_0 current is 0.01 x I_n and for the U_0 voltage 0.01 x U_n .

Signal	Description		
I01RMS	Fundamental frequency component of coarse residual current measurement input I01		
I01TRMS	TRMS measurement of coarse residual current measurement input I01		
I ₀₁ PP	Peak-to-peak measurement of coarse residual current measurement input 101	5ms	
I ₀₂ RMS	Fundamental frequency component of sensitive residual current measurement input I02		
I ₀₂ TRMS	TRMS measurement of coarse sensitive current measurement input I02		
I ₀₂ PP	Peak-to-peak measurement of sensitive residual current measurement input I02		
I0Calc	Fundamental frequency component of residual current calculated from the three phase currents	5ms	
U ₀ RMS	Fundamental frequency component of zero sequence voltage measurement input U0		
U _{0Calc}	Fundamental frequency component of of the zero sequence voltage calculated from the three phase voltages	5ms	

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Name	Range	Default	Description
I0dir> LN mode	On Blocked Test Test/Blocked Off	On	Set mode of DEF block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
I0dir> force status to	 Normal Start Trip Blocked Unearthed Start Unearthed Trip Compensated Start Compensated Trip 	Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.

Table. 4.4.9 - 94. General settings of the function.

Name	Range	Default	Description
U0 directional phase	• U0 • -U0	U0	If the connected neutral voltage polarity is opposite to the connected residual current, this parameter can swap the angle reference.
U0> Meas input select	 Select U0 Calculated U3 Input U4 Input 	Select	Defines which available neutral voltage measurement is used. Available neutral voltages depend on measurement settings (<i>Measurements</i> \rightarrow <i>Transformers</i> \rightarrow <i>VT module</i>).
Measured magnitude	 RMS TRMS Peak-to-peak	RMS	Defines which available measured magnitude is used by the function. This parameter is available when "Input selection" has been set to "I01" or "I02".
Input selection	 I01 I02 I0Calc	101	Defines which measured residual current is used by the function.

Pick-up settings

The the pick-up of the l0dir> function is controlled by the I_{0set} setting parameter and the U_{0set} setting parameter. The former defines the maximum allowed measured current, while the latter defines the maximum allowed measured voltage and checks the angle difference before action from the function. The function constantly calculates the ratio between the I_{0set} and the U_{0set} and the measured magnitudes (I_m and U_m). The reset ratio of 97 % is built into the function and is always relative to the I_{0set} (or U_{0set}) value. When the I_m exceeds the I_{0set} value it triggers the pick-up operation of the function.

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

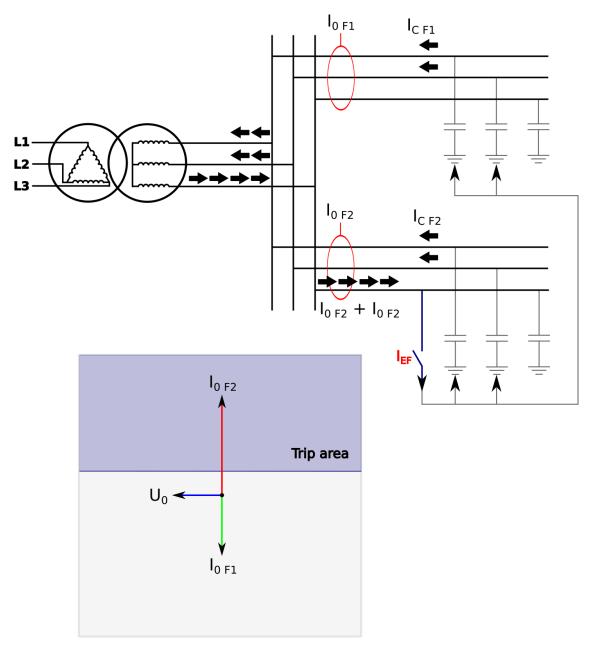

Name	Range	Step	Default	Description
I0 _{set}	0.00540.00×In	0.001×I _n	1.20×I _n	Current pick-up setting
U0set	175%U _n	0.01%U _n	20%Un	Voltage pick-up setting
Grounding type	 Unearthed [32N Var] Petersen coil GND [32N Watt] Grounded [67N] I0Cos & I0Sin broad range with MCD [32N Var/ Watt] 	-	Unearthed	Network grounding method
Multi-criteria detection	Not usedUsed	-	Not used	Activation of detecting healthy or unhealthy feeder by analyzing symmetrical components of currents and voltages. Visible when earthing type is set to I0 _{Cos} & I0 _{Sin} broad range mode.

Table. 4.4.9 - 95. Pick-up settings.

Name	Range	Step	Default	Description
Unearthed/ Compensated border angle	-45.090°	0.1°	45°	Dividing the angle between unearthed and compensated tripping (see description later in this document). Visible when earthing type is set to I0 _{Cos} & I0 _{Sin} broad range mode.
Angle	±45.0135.0°	0.1°	±88°	Tripping area size (earthed network)
Angle offset	0.0360.0°	0.1°	0.0°	Protection area direction (earthed network)
Angle blinder	-90.00.0°	0.1°	-90°	I0 angle blinder (Petersen coil earthed)

Unearthed network

Figure. 4.4.9 - 47. Angle tracking of IOdir> function (unearthed network model) (32N)

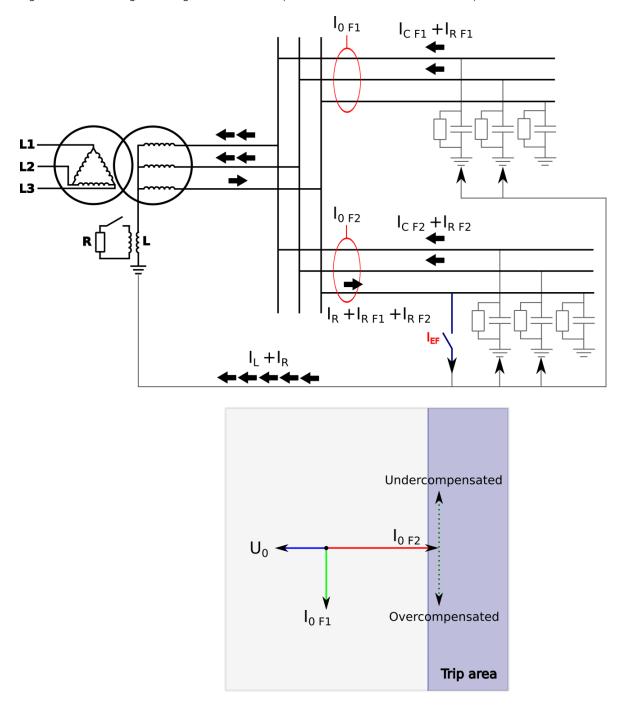
When the unearthed (capacitive) network mode is chosen, the function expects the fault current to be lagging zero sequence voltage by 90 degrees. Healthy phases of healthy feeders produce capacitive current during earth fault just like a faulty feeder but the current is floating towards the busbar and through an incoming feeder transformer or a earthing transformer and into a faulty feeder. Healthy feeders do not trip since capacitive current is floating to the opposite direction and selective tripping can be ensured.

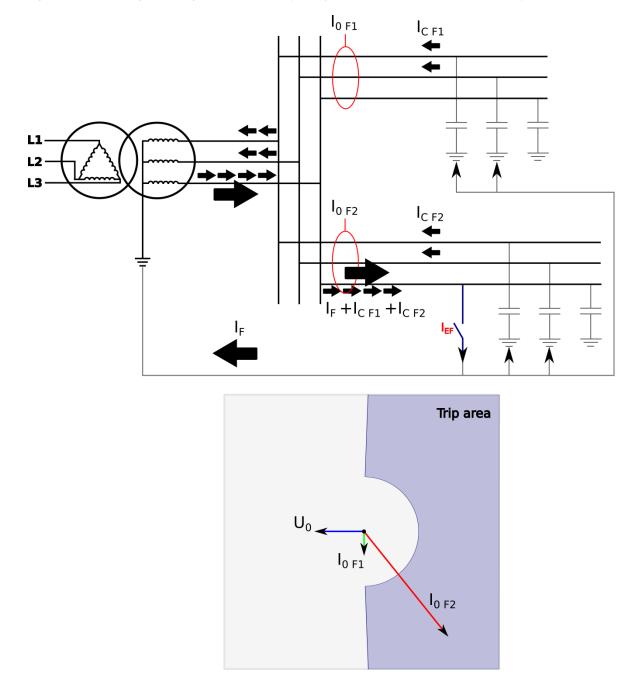
The amplitude of the fault current depends on the capacitance of the network. The outgoing feeders are the sources for capacitive currents. The bigger the network the greater the capacitive current during a fault. Each outgoing feeder produces capacitance according to the zero sequence capacitive reactance of the line (ohms per kilometer). It is normal that in cable networks fault currents are higher than in overhead lines.

The resistance of the fault affects the size of the voltage drop during a fault. In direct earth fault the zero sequence voltage amplitude is equal to the system's line-to-earth voltage. In direct earth fault the voltage of a faulty phase drops close to zero and healthy phase voltages increase to the amplitude of line-to-line voltages.

Petersen coil earthed (Compensated) network (32N)

There are many benefits to a Petersen coil earthed network. The amount of automatic reclosing is highly decreased and the maintenance of the breakers is therefore diminished. Arc faults die on their own, and cables and equipment suffer less damage. In emergency situations a line with an earth fault can be used for a specific time.




Figure. 4.4.9 - 48. Angle tracking of IOdir> function (Petersen coil earthed network model).

When the Petersen coil earthed (compensated) network mode is chosen, the function expects the fault current to be in the opposite direction to the zero sequence voltage. Healthy phases of both healthy and faulty feeders produce a capacitive current similar to the unearthed network. The inductance of the Petersen coil compensates the capacitive current and therefore the residual current in a fault location is close to zero. The size of the inductance is chosen according to the prospective earth fault current of the network. The desired compensation grade is achieved when the K factor is close to 1.0 and the network is fully compensated. The network is overcompensated when the K factor is greater than 1.0, and undercompensated when the K factor is smaller than 1.0.

The inductance connected to the star point of an incoming feeder transformer or -as in most cases- to a earthing transformer compensates the capacitance of the network; however, this prevents the capacitive fault current to be measured. The fault detection is handled by connecting the resistance in parallel with the inductance. This resistance includes the amplitude of the fault current. In undercompensated or overcompensated situations the resistive component does not change during the fault; therefore, selective tripping is ensured even when the network is slightly undercompensated or overcompensated.

Directly earthed or small impedance network (67N)

Figure. 4.4.9 - 49. Angle tracking of IOdir> function (directly earthed or small impedance network).

In a directly earthed network the amplitude of a single-phase fault current is similar to the amplitude of a short-circuit current. Directly earthed or small impedance network schemes are normal in transmission, distribution and industry.

The phase angle setting of the tripping area is adjustable as is the base direction of the area (angle offset).

Broad range mode with multi-criteria detection for unearthed and compensated networks

When detecting earth faults in compensated long-distance cables and overhead lines, it is in some cases difficult to distinguish between a healthy and a faulty feeder. Merely measuring the angle and the magnitude of residual voltage and currents is not always enough, as changes in symmetrical components of phase currents and voltages are also needed. Additionally, when protecting feeders from earth faults, two modes are used depending on the network status (unearthed or compensated). When changing between these two statuses the setting group must be changed, and especially with distributed compensation the change may be difficult or impossible to arrange. Finally, in a compensated network protection relays with traditional algorithms may sporadically detect an earth fault in a long healthy feeder due to CT errors. For all these reasons, Arcteq has developed an improved alternative to these traditional directional earth fault protections.

New broadrange mode

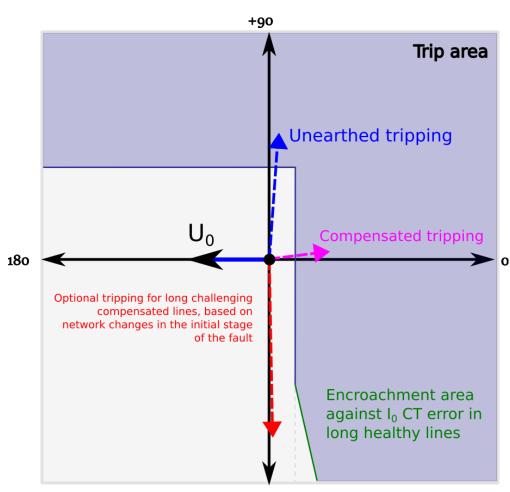


Figure. 4.4.9 - 50. Angle tracking of the IOdir> function (broad range mode).

-90

The new broad range mode is capable of detecting an earth fault directionally in both unearthed and compensated networks not only by combining the two stages together but by using a new multi-criteria detection. This optional additional tripping condition for compensated networks uses Arcteq's patented, high-resolution intermittent earth fault algorithm with added symmetrical component calculation of phase currents and voltages. If this mode is activated, the alarming criteria is comprised of a measured residual current in the fourth quadrant and the symmetrical components of voltages and currents detecting a fault. No extra parameterization is required compared to the traditional method. The multi-criteria algorithm can be tested with COMTRADE files supplied by Arcteq. The function requires a connection of three-phase currents, residual current and residual voltage to operate correctly.

To avoid unnecessary alarms the user can add an encroachment area against I0 CT errors in compensated long healthy lines.

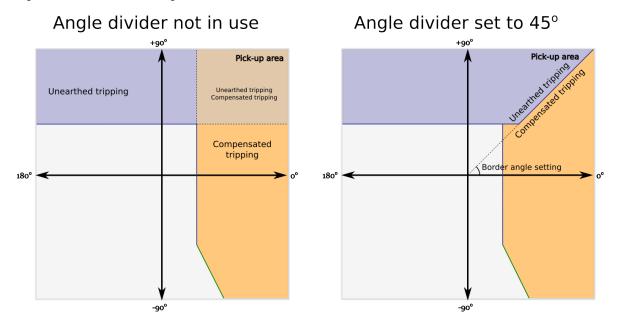


Figure. 4.4.9 - 51. Effect of angle divider when in use and when disabled.

To receive a more accurate indication as to whether the fault was in a compensated or an unearthed network the angle divider can divide the area which would otherwise be overlapped between the two network models. By default the setting is 45 degrees. When the divider is disabled the angle is set to zero degrees.

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Name	Range	Step	Description
I0dir> LN behaviour	 On Blocked Test Test/Blocked Off 	On	Set mode of NOC block. This parameter is visible only when <i>Allow setting of</i> <i>individual LN mode</i> is enabled in <i>General</i> menu.

Table. 4.4.9 - 96. Information displayed by the function.

Name	Range	Step	Description
I0dir> condition	NormalStartTripBlocked	-	Displays the status of the protection function.
U0> Measuring now	 No U0 avail! U0Calc U3 Input U4 Input 	-	Displays which voltage channel is used by the function. If no voltage channel has been selected the function defaults to calculated residual voltage if line-to-neutral voltages have been connected to device. If no channel is set to "U0" mode and line-to-line voltages are connected, no residual voltage is available and "No U0 avail!" will be displayed.
U0> Pick-up setting	0.01 000 000V	0.1V	The required residual voltage on the primary side for the function to trip.
Detected U0/ I0 angle (fi)	-360.00360.00deg	0.01deg	The angle in degrees between the monitored residual voltage and the current.
10 Magnitude	0.000250.000×10 _n	0.001×10 _n	The per-unit-value of the monitored residual current.
I0 Wattmetric I0xCos(fi)	-250.000250.000×10 _n	0.001×10 _n	The wattmetric per-unit-value of the monitored residual current.
I0 Varmetric I0xSin(fi)	-250.000250.000×10 _n	0.001×10 _n	The varmetric per-unit-value of the monitored residual current.
10 direction now	UndefinedForwardReverse	-	The detected direction of the residual current.
I0 meas/ I0 set now	-250.000250.000×10 _n	0.001×10 _n	The ratio between the monitored residual current and the pick-up value.
U0 measurement now	0.000500.000%U0 _n	0.001%U0 _n	The measured voltage in the chosen voltage channel.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs. When IDMT mode is used, the expected operating time depends on the measured current value. If the measured current changes during a fault, the expected operating time changes accordingly.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. Additionally, the function includes an internal inrush harmonic blocking option which is applied according to the parameters set by the user. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

Table. 4.4.9 - 97. Internal inrush harmonic blocking settings.

Name	Range	Step	Default	Description
Inrush harmonic blocking (internal-only trip)	NoYes	-	No	Enables and disables the 2 nd harmonic blocking.
2 nd harmonic blocking limit (lharm/lfund)	0.1050.00%l _{fund}	0.01%l _{fund}	0.01%l _{fund}	The 2 nd harmonic blocking limit.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

This function supports definite time delay (DT) and inverse definite minimum time delay (IDMT). For detailed information on these delay types please refer to the chapter "<u>General properties of a protection</u> function" and its section "<u>Operating time characteristics for trip and reset</u>".

Events and registers

The directional overcurrent function (abbreviated "DEF" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a cumulative counter for the START, TRIP and BLOCKED events.

The function offers four (4) independent stages; the events are segregated for each stage operation.

Event block name	Event name
DEF1DEF4	Start ON
DEF1DEF4	Start OFF
DEF1DEF4	Trip ON
DEF1DEF4	Trip OFF
DEF1DEF4	Block ON
DEF1DEF4	Block OFF
DEF1DEF4	I0Cosfi Start ON
DEF1DEF4	I0Cosfi Start OFF
DEF1DEF4	I0Sinfi Start ON

Table. 4.4.9 - 98. Event messages.

Event block name	Event name
DEF1DEF4	I0Sinfi Start OFF
DEF1DEF4	I0Cosfi Trip ON
DEF1DEF4	I0Cosfi Trip OFF
DEF1DEF4	I0Sinfi Trip ON
DEF1DEF4	I0Sinfi Trip OFF

The function registers its operation into the last twelve (12) time-stamped registers; this information is available for all provided instances separately. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 4.4.9 - 99. Register content.

Register	Description
Event	Event name
Date and time	dd.mm.yyyy hh:mm:ss.mss
I ₀ pre-triggering current	Start/Trip -20ms current
I ₀ fault current	Start/Trip current
Fault capacitive I0	Start/Trip capacitive current
Fault resistive I ₀	Start/Trip resistive current
Fault U ₀ (%)	Start/Trip voltage (percentage of nominal)
Fault U ₀ (V)	Start/Trip voltage (in Volts)
lo fault angle	0360°
Trip time remaining	0 ms1800s
Setting group in use	Setting group 18 active
Network GND	Unearthed, Petersen coil earthed, Earthed network
Io pre-fault current	Start -200ms current

4.4.10 Intermittent earth fault protection (I0int>; 67NT)

The intermittent earth fault is a transient type of single-phase-to-earth fault where the actual fault phenomenon lasts for about a few hundred microseconds. The intermittent earth fault is commonly seen in Petersen coil grounded (compensated) medium voltage networks. The intermittent earth fault is commonly thought only as a cable network problem but it can also occur in overhead line networks. The key point for this type of fault appearance is the compensation of earth fault currents with a Petersen coil.

This phenomenon is becoming more frequent as more utilities networks are replacing overhead lines with cables dug into the ground. This development in distribution networks is very understandable as overhead lines are more vulnerable to possible seasonal storm damages. Also, the annual maintenance costs as well as the annual power-down time are both significantly lower with underground cable networks than with overhead line networks. However, the problem at hand is caused by the increasing amount of cabling in the network which in turn causes dramatic increases in the capacitive earth fault currents in the distribution networks. When the capacitive earth fault current increases in the network, it becomes necessary to detect the earth fault current with a Petersen coil.

Problems caused by intermittent earth fault are normally seen in compensated network substations: an earth fault can trip multiple feeders simultaneously, or an entire substation can be tripped by residual voltage back-up protection from the incomer. This is typical of old-fashioned protection relays as it is not capable of differentiating between a normal consistent earth fault and an intermittent earth fault. As the intermittent earth fault is a transient type of fault where the actual fault lasts only for a few hundred microseconds, this causes traditional directional earth fault protection devices to lose their directional sensitivity, and as a result their directional decision algorithms go haywire and the trip decisions will be completely random. Typically, when a whole substation goes dark the logs of all protection relays show how they have experienced multiple incorrect directional earth fault starts and releases, as well as an incoming feeder protection relay residual voltage trip. This is also the worst case scenario. In another typical scenario a few feeders, including the correct faulty feeder, have tripped at the same time. In this case, as in the previous, all the protection relays' logs show various incorrect directional earth fault starts and releases.

Previously, these scenarios were usually ignored and filed under 'Mysteries of the universe' because they only occured once or twice a year and because disturbance recordings were not commonly used in normal medium-voltage substations for fault verification. However, when disturbance recorders were introduced as a common feature of protection devices this phenomenon received a name and defined characteristics. One such characteristic is the occurence of high magnitude current spikes, which –compared to residual voltage– are in the opposite direction of the current spike in faulty feeders and concurrent in healthy feeders. Handling these unique characteristics requires a completely different set of tools than what traditional directional earth fault protection can offer. The following figures present three intermittent earth fault situations experienced by protection relays in a substation.

Figure. 4.4.10 - 52. An intermittent earth fault in a medium size network tuned close to resonance, as seen by a protection relay of a faulty feeder.

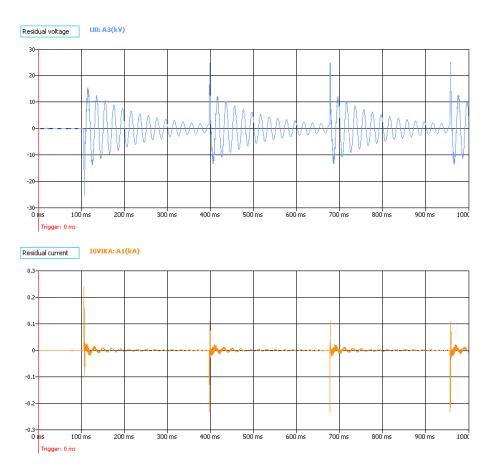
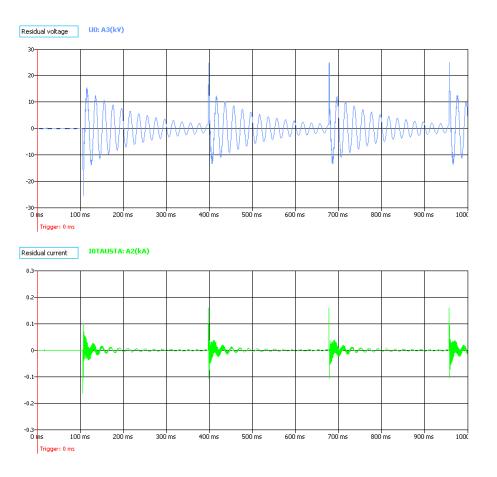



Figure. 4.4.10 - 53. An intermittent earth fault in a network tuned close to resonance, as seen by a protection relay of a healthy feeder.

-0.2 -0.3 -0.4 -0.5 0 ms

100 ms

Trigger: 0 ms

300 ms

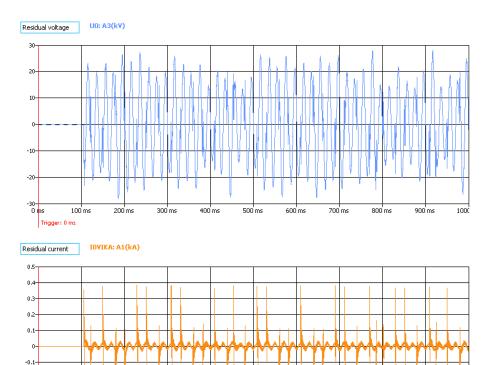
200 ms

400 ms

500 ms

600 ms

700 ms


800 ms

900 ms

1000

Version: 2.12

Figure. 4.4.10 - 54. An intermittent earth fault in an undercompensated medium size network, as seen by protection relay of a faulty feeder.

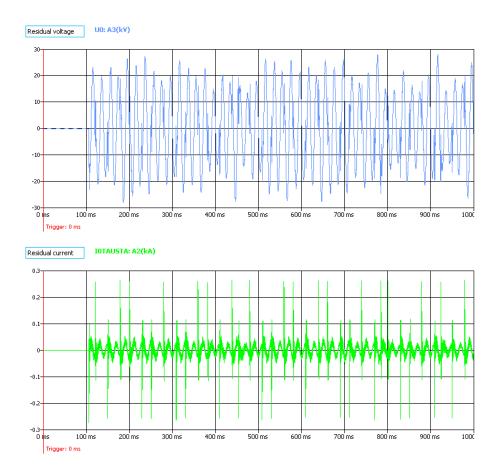


Figure. 4.4.10 - 55. Undercompensated medium size network intermittent earth fault seen by a protection relay of a healthy feeder.

As can be seen from the figures above, the residual voltage is high both in the network tuned close to resonance and in the undercompensated network. In the case of a normal directional earth fault protection, a network tuned close to resonance would probably not even pick up on the fault, and if it did it would release before the set operating time. The residual voltage stays on for a longer period of time. Although the release would most likely come before the set tripping time, this situation could last for quite some time and put a lot of unnecessary stress on the network, possibly causing an insulator breakdown in another part of the network.

In undercompensated and overcompensated networks the residual voltage stays near the maximum level all the time, and current flashover spikes occur every power cycle. In this case, normal FFT-based directional earth fault protection algorithms lose their directional sense because an FFT-processed input signal expects the power cycle to provide long, stable data for accurate directional output. There are multiple zero crossings during a normal power cycle and therefore the FFT result may be anything from 0 to 180 degrees. When analyzing the situation from the point of view of normal directional earth fault protection, the result may be an expected trip in a faulty feeder, a false trip in a healthy feeder, or no trip whatsoever, all equally probable.

Description of the patented intermittent earth fault algorithm

The algorithm relates to a method for identifying transient-type earth faults in an electrical network and for selectively tripping a faulty branch line (A/D). The absolute value (I0_{max}) and its index in a zerocurrent buffer are retrieved from the samples of a zero-current sampling buffer. This is done by means of value-depicting the admittance-delta which is calculated using the ratio DELTAI0/DELTAU0: that is, the ratio between the zero current I0 difference DELTAI0 and the residual voltage UC difference DELTAU0. A negative admittance-delta is classified as forward (FWD). A transient-type earth fault is detected in the branch line with the aid of at least one forward (FWD) spike during a selected time (FWDreset).

More detailed information of the patent can be found on the European Patent Office webpages. The patent's data code is EP3213381 (A1). A link to the patent: <u>https://worldwide.espacenet.com/publicationDetails/</u> <u>biblio?II=2&ND=3&adjacent=true&locale=en_EP&FT=D&date=20170906&CC=EP&NR=3213381A1&KC=A1</u>.

Setting principles

The intermittent earth fault protection will be coordinated with bus bar residual voltage protection. This way, during an intermittent earth fault, a faulty feeder's protection function will trip in all three previously described scenarios. Also, an intermittent earth fault protection function tripping before the residual voltage protection function results in a sufficient safety margin. However, since an intermittent earth fault causes significant network stress the protection trip should be performed as fast as possible.

The strike-through time of an intermittent earth fault in a network tuned close to resonance sets the limit for the minimum operating time for an intermittent earth fault protection stage. To ensure a correct protection operation in all cases, the reset time of an intermittent earth fault stage will be set according to the network in question, to such a level that ensures that the fault has disappeared and no new strike-throughs are expected after a prescribed reset time.

The size of the network is a dominant factor in defining the time interval of a strike-through. One can expect less frequent strike-throughs in larger (in amperes) networks. The following can be presented as a rule of a thumb: in a small or medium size network (<60 A) the strike-through interval is appr. 250...350 ms, in a large network (~100 A) it is appr. 500 ms. It is recommended that the reset time of an intermittent earth fault stage should not be set lower than 450 ms in order to obtain a network independent setting. Using this recommended value one can ensure that the function will not reset too early even in resonance tuned networks.

Usually the maximum operating time of an intermittent earth fault function is dictated by the residual voltage protection of the bus bar. If the residual voltage protection is set to very fast tripping, it may be necessary to also prolong its set value. It is recommended that the operating time of an intermittent earth fault stage should be 500 ms counting from the first strike-through. Using this recommended value the protection tripping requires a minimum of two strike-troughs even in resonance tuned networks in which strike-throughs occur less frequently. If the residual voltage protection is set to very fast tripping (<1 s), it may be necessary to verify the reset value of the residual voltage protection. The residual voltage protection operating time will never be faster than the sum of the following: the prescribed intermittent earth fault operating time, the circuit breaker operating time, and the reset time of the residual voltage protection stage.

If an intermittent earth fault protection start is used to block regular non-intermittent directional earth fault protection, the blocking should be applied to protection relays at both healthy and faulty feeders. In general, if intermittent earth fault protection is not used to block directional earth fault protection, it should be verified that the operating time of regular directional earth fault protection is longer than the set intermittent earth fault protection operating time. It is recommended to block regular directional earth fault protection during intermittent earth faults (if start events are considered disturbing), or if directional non-intermittent earth fault protection is set to a faster operating time than intermittent earth fault protection.

If intermittent earth fault protection would be set for optimal operation, sensitive pick-up settings should be avoided. General setting parameter values are presented below.

Setting parameter	Value
U0 Detect spike >	60 %
I0 Detect spike >	0.5 x <i>IO</i> n
FWD reset time	0.250 s
REV reset time	0.250 s

Setting parameter	Value
Definite operating time delay	0.500 s
Spikes to trip >	2

The best verification for the settings is a field test with a test system capable of intermittent earth faults. One network characteristic may vary significantly from another. By following the basic rules presented in this chapter it should be easier to define the correct setting range.

It is also important to check that the reset time settings are never set longer than the desired operating time delay setting.

Measured input

The function block uses residual current measurement channels and neutral voltage measurement channels. Either the I_{01} or the I_{02} channel can be selected for residual current samples. Either U_3 or U_4 voltage channel can be selected for neutral voltage samples. The selection of the used measurement channels are made with setting parameters.

Table. 4.4.10 - 100. Measurement inputs of the I0int> function.

Signal	Description	Time base
U ₃ samples	U ₃ neutral voltage circular buffer of samples	5 ms
U ₄ samples	U4 neutral voltage circular buffer of samples	5 ms
I ₀₁ samples	I ₀ residual current circular buffer of samples	5 ms
lo2 samples	Io residual current circular buffer of samples	5 ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table 4 4 10 - 101	General settings of the function.
10010. 4.4.10 - 101.	Ocheral settings of the function.

Name	Range	Default	Description
I0Int> [67NT] mode	 On Blocked Test Test/ Blocked Off 	On	Set mode of IEF block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
I0Int> force status to	 Normal Blocked StartFWD StartREV Trip 	Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
Input selection	• 101 • 102	101	Defines which measured residual current is used by the function.

Pick-up settings

The setting parameters *U0 Detect spike>* and *I0 Detect spike>* control the pick-up of the I0int> function. They define the maximum allowed measured residual current and voltage before action from the function. The function constantly calculates the ratio between the setting and the maximum value of the circular buffer.

Table. 4.4.10 - 102. Pick-up settings.

Name	Range	Step	Default	Description
U0 Detect spike >	1.00100.00%U _n	0.01%Un	80.00%U _n	Pick-up setting U0
I0 Detect spike >	0.0540.00xI0 _n	0.01xl0 _n	0.50xl0 _n	Pick-up setting I0

The START signal is allowed if the blocking condition is not active and if the threshold of the admittance delta calculated by the input signal exceeds these settings:

- I0 Detect spike > = set admittance delta threshold
- U0 Detect spike > = set admittance delta threshold.

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Table. 4.4.10 - 103. Information displayed by the function.

Name	Range	Step	Description
I0Int> [67NT] behaviour	 On Blocked Test Test/Blocked Off 	-	Displays the mode of IEF block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
I0Int> condition	 Normal StartFWD StartREV Trip Blocked 	-	Displays status of the protection function.
U0> measuring now	No U0 avail!U3 InputU4 Input	-	Displays which voltage channel is used by the function. If no voltage channel has been selected the function defaults to "No U0 avail!".
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs.
Time remaining to trip	0.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
Spikes remaining to trip >	04294967295	1	Displays how many spikes need to be detected before tripping can occur.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

The operating timers' behavior during a function can be set for trip signal and for the release of the function in case the pick-up element is reset before the trip time has been reached. A definite time (DT) operation gives the trip signal after a user-defined time delay regardless of the measured current as long as the pick-up element is active. The following table presents the setting parameters for the function time characteristics.

Name	Range	Step	Default	Description
FWD reset time	0.0001800.000s	0.005s	0.300s	Forward start detection reset time. Starts to count from the first detected forward (faulty feeder) spike. If while counting another spike is detected, it resets and starts from the beginning. If it runs to the end, it resets the function's STARTFWD signal.
REV reset time	0.0001800.000s	0.005s	0.300s	Reverse start detection reset time. Starts to count from the first detected reverse (healthy feeder) spike. If while counting another spike is detected, it resets and starts from the beginning. If it runs to the end, it resets the function's STARTREV signal.
Definite operating time delay	0.0001800.000s	0.005s	0.500s	Operating time counter that starts from the beginning of the fault if the FWD reset time is running and the function has a START signal on. If the FWD reset time is reached and the function releases, this timer is reset as well.
Spikes to trip >	150	1	2	The calculated cumulative spikes comparator. In order for the function to trip, a set number of spikes must be exceeded. If the set operating time is reached but the calculated spike number is below this, the setting function releases without a trip when the FWD reset time has elapsed.

Table. 4.4.10 - 104. Operating time characteristics setting parameters.

Events and registers

The intermittent earth fault function (abbreviated "IEF" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a cumulative counter for the START, TRIP and BLOCKED events.

Table. 4.4.10 - 105. E	Event messages.
------------------------	-----------------

Event block name	Event names
IEF1	Start FWD ON
IEF1	Start FWD OFF
IEF1	Start REV ON
IEF1	Start REV OFF
IEF1	Trip ON
IEF1	Trip OFF
IEF1	Block ON
IEF1	Block OFF
IEF1	Intermittent EF detected ON
IEF1	Intermittent EF detected OFF
IEF1	Normal earthfault detected
IEF1	Intermittent EF Locked

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Name	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
Trip time remaining	Time remaining from the set operating time.
Started FWD	YES/NO indication of the forward start in this fault.
Spikes FWD	The calculated cumulative amount of forward (faulty) feeder spikes.
Started REV	YES/NO indication of the reverse start in this fault.
Spikes REV	The calculated cumulative amount of reverse (healthy) feeder spikes
Spikes to trip	Set spikes to trip subtracted by the cumulative forward spikes. If 0 spikes, it trips.
Setting group in use	18

Table. 4.4.10 - 106. Register content.

4.4.11 Negative sequence overcurrent/ phase current reversal/ current unbalance protection (I2>; 46/46R/46L)

The current unbalance function is used for instant and time-delayed unbalanced network protection and for detecting broken conductors. The number of stages in the function depends on the device model. The operating decisions are based on negative and positive sequence current magnitudes which the function constantly measures. In the broken conductor mode (I2/I1) the minimum allowed loading current is also monitored in the phase current magnitudes.

There are two possible operating modes available: the I2 mode monitors the negative sequence current, while the I2/I1 mode monitors the ratio between the negative sequence current and the positive sequence current. The device calculates the symmetrical component magnitudes in use from the phase current inputs I_{L1} , I_{L2} and I_{L3} . The zero sequence current is also recorded into the registers as well as the angles of the positive, negative and zero sequence currents in order to better verify any fault cases.

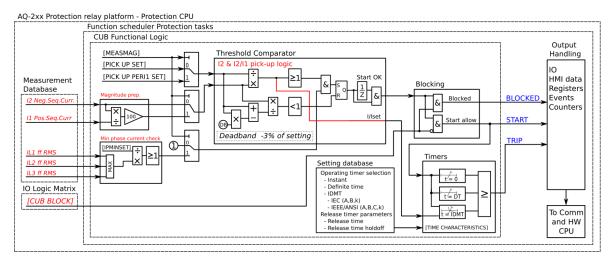


Figure. 4.4.11 - 56. Simplified function block diagram of the I2> function.

Measured input

The function block uses positive and negative sequence currents calculated from the phase current measurement channels. In the broken conductor mode (I2/I1) the function also uses fundamental frequency component of all phase currents to check the minimum current. Zero sequence and component sequence angles are used for fault registering and for fault analysis processing.

Signal	Description	
11	Positive sequence current magnitude	5 ms
12	Negative sequence current magnitude	5 ms
IZ	Zero sequence current magnitude	5 ms
I1 ANG	Positive sequence current angle	5 ms
I2 ANG	Negative sequence current angle	5 ms
IZ ANG	Zero sequence current angle	5 ms

Table. 4.4.11 - 107. Measurement inputs of the I2> function.

Signal	Description	Time base
IL1RMS	Fundamental frequency component of phase L1 (A) current measurement	5 ms
IL2RMS	Fundamental frequency component of phase L2 (B) current measurement	5 ms
I _{L3} RMS	Fundamental frequency component of phase L3 (C) current measurement	5 ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 4.4.11 -	108.	General settings of the function.
-----------------	------	-----------------------------------

Name	Range	Default	Description
I2> LN mode	 On Blocked Test Test/ Blocked Off 	On	Set mode of CUB block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
I2> force status to	NormalStartTripBlocked	Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
Measured magnitude	I2puI2/I1	l2pu	Defines whether the ratio between the positive and the negative sequence currents are supervised or whether only the negative sequence is used in detecting unbalance.

Pick-up settings

The setting parameters I_{2set} and I_2/I_{1set} control the the pick-up of the I2> function. They define the maximum allowed measured negative sequence current or the negative/positive sequence current ratio before action from the function. The function constantly calculates the ratio between the I_{set} and the measured magnitude (I_m). The reset ratio of 97 % is built into the function and is always relative to the I_{sset} value. The reset ratio is the same for both modes.

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

Name	Range	Step	Default	Description
I2set	0.0140.00×I _n	0.01×I _n	0.2×I _n	Pick-up setting for I2 mode
I2/I1set	1200%	0.01%	20%	Pick-up setting for I2/I1 mode

Table. 4.4.11 - 109. Pick-up settings.

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Table 441°	1 - 110	Information	displayed	by the function.
Table. 4.4. I	- 110.	Information	uispiayeu	

Name	Range	Description	
I2> LN behaviour	On Blocked Test Test/ Blocked Off	Displays the mode of CUB block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.	
I2> condition	Normal Start Trip Blocked	Displays the status of the protection function.	

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

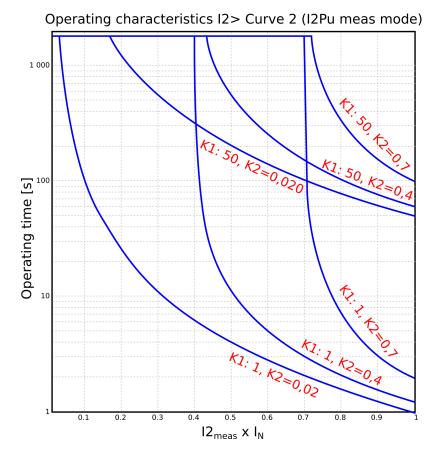
If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and processes the release time characteristics similarly to when the pick-up signal is reset.

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

The operating timers' behavior during a function can be set for TRIP signal and also for the release of the function in case the pick-up element is reset before the trip time has been reached. There are three basic operating modes available for the function:

- Instant operation: gives the TRIP signal with no additional time delay simultaneously with the start signal.
- Definite time operation (DT): gives the TRIP signal after a user-defined time delay regardless of the measured current as long as the current is above or below the *iset* value and thus the pick-up element is active (independent time characteristics).
- Inverse definite minimum time (IDMT): gives the TRIP signal after a time which is in relation to the set pick-up value *I_{set}* and the measured current *I_m* (dependent time characteristics).


Both IEC and IEEE/ANSI standard characteristics as well as user settable parameters are available for the IDMT operation.

Unique to the current unbalance protection is the availability of the "Curve2" delay which follows the formula below:

$$t = \frac{k}{I_{2meas}^2 - I_{set}^2}$$

- *t* = Operating time
- I2meas = Calculated negative sequence
- *k* = Constant k value (user settable delay multiplier)
- *Iset*= Pick-up setting of the function

Figure. 4.4.11 - 57. Operation characteristics curve for I2> Curve2.

For a more detailed description on the time characteristics and their setting parameters, please refer to the "<u>General properties of a protection function</u>" chapter and its "<u>Operating time characteristics for trip</u> and reset" section.

Events and registers

The current unbalance function (abbreviated "CUB" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

The function offers four (4) independent stages; the events are segregated for each stage operation.

Table. 4.4.11 - 111. Event messages.

Event block name	Event names
CUB1CUB4	Start ON
CUB1CUB4	Start OFF
CUB1CUB4	Trip ON
CUB1CUB4	Trip OFF
CUB1CUB4	Block ON
CUB1CUB4	Block OFF

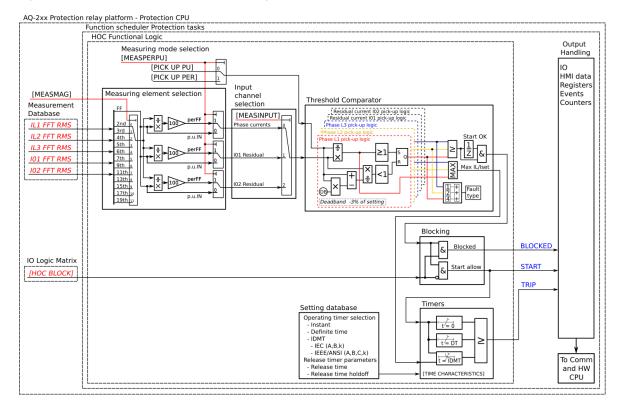

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 4.4.11 - 112. Register content.

Register	Description
Event	Event name
Date and time	dd.mm.yyyy hh:mm:ss.mss
Pre-trigger current	Start/Trip -20ms current
Fault current	Start/Trip current
Pre-fault current	Start -200ms current
Fault currents	I1, I2, IZ mag. and ang.
Trip time remaining	0 ms1800s
Setting group in use	Setting group 18 active

4.4.12 Harmonic overcurrent protection (Ih>; 50H/51H/68H)

The harmonic overcurrent function is used for non-directional instant and time-delayed overcurrent detection and clearing. The number of stages in the function depends on the device model. The function constantly measures the selected harmonic component of the selected measurement channels, the value being either absolute value or relative to the RMS value.

Figure. 4.4.12 - 58. Simplified function block diagram of the Ih> function.

Measured input

The function block uses analog current measurement values from phase or residual currents. Each measurement input of the function block uses RMS (fundamental frequency component) values and harmonic components of the selected current input. The user can select the monitored magnitude to be equal to the per-unit RMS values of the harmonic component, or to the harmonic component percentage content compared to the RMS values.

Table. 4.4.12 - 113. Measurement inputs of the lh> function.

Signal	Description	Time base
IL1FFT	The magnitudes (RMS) of phase L1 (A) current components: - Fundamental - 2 nd harmonic - 3 rd harmonic - 4 th harmonic - 5 th harmonic - 6 th harmonic - 7 th harmonic - 9 th harmonic - 11 th harmonic - 15 th harmonic - 15 th harmonic - 19 th harmonic - 19 th harmonic.	5 ms

Signal	Description	Time base
IL2FFT	The magnitudes (RMS) of phase L2 (B) current components: - Fundamental - 2 nd harmonic - 3 rd harmonic - 4 th harmonic - 5 th harmonic - 6 th harmonic - 7 th harmonic - 9 th harmonic - 11 th harmonic - 15 th harmonic - 15 th harmonic - 15 th harmonic - 19 th harmonic - 19 th harmonic.	5 ms
IL3FFT	The magnitudes (RMS) of phase L3 (C) current components: - Fundamental - 2 nd harmonic - 3 rd harmonic - 4 th harmonic - 5 th harmonic - 6 th harmonic - 7 th harmonic - 9 th harmonic - 11 th harmonic - 15 th harmonic - 15 th harmonic - 15 th harmonic - 19 th harmonic - 19 th harmonic.	5 ms
I ₀₁ FFT	The magnitudes (RMS) of residual I0 ₁ current components: - Fundamental - 2 nd harmonic - 3 rd harmonic - 4 th harmonic - 5 th harmonic - 6 th harmonic - 7 th harmonic - 9 th harmonic - 11 th harmonic - 13 th harmonic - 15 th harmonic - 19 th harmonic - 19 th harmonic.	5 ms

Signal	Description	Time base
lo2FFT	The magnitudes (RMS) of residual 10 ₂ current components: - Fundamental - 2 nd harmonic - 3 rd harmonic - 4 th harmonic - 5 th harmonic - 6 th harmonic - 7 th harmonic - 9 th harmonic - 11 th harmonic - 15 th harmonic - 15 th harmonic - 19 th harmonic.	5 ms

General settings

The function can be set to monitor the ratio between the measured harmonic and either the measured fundamental component or the per unit value of the harmonic current. The user must select the correct measurement input.

Table. 4.4.12 - 114.	Operating mode s	election settings.

Name	Range	Default	Description
lh> LN mode	 On Blocked Test Test/ Blocked Off 	On	Set mode of HOC block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
Ih> force status to	 Normal Start Trip Blocked 	Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.

AQ-C255 Instruction manual

Version: 2.12

Name	Range	Default	Description
Harmonic selection	 2nd harmonic 3rd harmonic 4th harmonic 5th harmonic 6th harmonic 7th harmonic 9th harmonic 11th harmonic 15th harmonic 15th harmonic 17th harmonic 17th harmonic 17th harmonic 17th harmonic 19th harmonic 	2 nd harmonic	Selection of the monitored harmonic component.
Per unit or relative	• × I _n • Ih/IL	× I _n	Selection of the monitored harmonic mode. Either directly per unit x I_n or in relation to the fundamental frequency magnitude.
Measurement input	 IL1/IL2/ IL3 I01 I02 	IL1/IL2/ IL3	Selection of the measurement input (either phase current or residual current).

Pick-up settings

The setting parameter Ih_{set} per unit or Ih/IL (depending on the selected operating mode) controls the pick-up of the Ih> function. This defines the maximum allowed measured current before action from the function. The function constantly calculates the ratio between the Ih_{set} per unitor Ih/IL and the measured magnitude (I_m) for each of the three phases. The reset ratio of 97 % is built into the function and is always relative to the Ih_{set} per unit or Ih/ILvalue. The setting value is common for all measured phases, and when the I_m exceeds the I_{set} value (in single, dual or all phases) it triggers the pick-up operation of the function.

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

Name	Range	Step	Default	Description
Ih _{set} pu	0.052.00×I _n	0.01×I _n	0.20×I _n	Pick-up setting (per unit monitoring)

Table	4 4 12 -	115	Pick-up	settings.
Table.	4.4.12 -	110.	i ick-up	settings.

Name	Range	Step	Default	Description
lh/IL	5.00200.00%	0.01%	20.00%	Pick-up setting (percentage monitoring)

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Table. 4.4.12 - 116. Information displayed by the function.

Name	Range	Step	Description
lh> behaviour	 On Blocked Test Test/Blocked Off 	-	Displays the mode of HOC block. This parameter is visible only when <i>Allow setting of individual</i> <i>LN mode</i> is enabled in <i>General</i> menu.
lh> condition	NormalStartTripBlocked	-	Displays the status of the protection function.
Ih meas/ Ih set now	0.00100000.00I _m /I _{set}	0.011 _m /l _{set}	The ratio between the monitored residual current and the pick-up value.
Expected operating time 0.0001800.000s		0.005s	Displays the expected operating time when a fault occurs. When IDMT mode is used, the expected operating time depends on the measured voltage value. If the measured voltage changes during a fault, the expected operating time changes accordingly.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

This function supports definite time delay (DT) and inverse definite minimum time delay (IDMT). For detailed information on these delay types please refer to the chapter "<u>General properties of a protection</u> function" and its section "<u>Operating time characteristics for trip and reset</u>".

Events and registers

The harmonic overcurrent function (abbreviated "HOC" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

The function's outputs can be used for direct I/O controlling and user logic programming. The START signal can be used to block other stages; if the situation lasts longer, the TRIP signal can be used on other actions as time-delayed. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

The function offers four (4) independent stages; the events are segregated for each stage operation.

Event block name	Event names
HOC1HOC4	Start ON
HOC1HOC4	Start OFF
HOC1HOC4	Trip ON
HOC1HOC4	Trip OFF
HOC1HOC4	Block ON
HOC1HOC4	Block OFF

Table. 4.4.12 - 117. Event description.

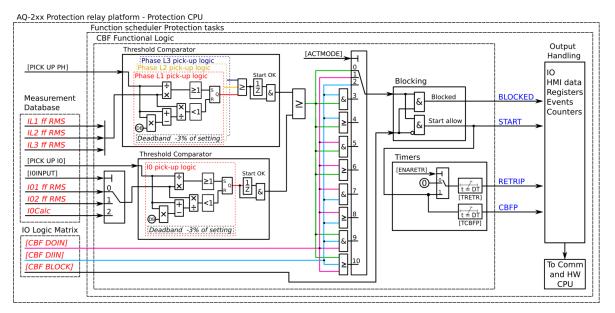
The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 4.4.12 - 118. Register content.

Register	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
Fault type	L1-GL1-L2-L3
Pre-trigger current	Start/Trip -20ms current
Fault current	Start/Trip current
Pre-fault current	Start -200ms current
Trip time remaining	0 ms1800s

Register	Description
Setting group in use	Setting group 18 active

4.4.13 Circuit breaker failure protection (CBFP; 50BF/52BF)


The circuit breaker failure protection function is used for monitoring the circuit breaker operation after it has received a TRIP signal. The function can also be used to retrip a failing breaker; if the retrip fails, an incoming feeder circuit breaker can be tripped by using the function's CBFP output. The retrip functionality can be disabled if the breaker does not have two trip coils.

The function can be triggered by the following:

- overcurrent (phase and residual)
- digital output monitor
- digital signal
- any combination of the above-mentioned triggers.

In the current-dependent mode the function constantly measures phase current magnitudes and the selected residual current. In the signal-dependent mode any of the device's binary signals (trips, starts, logical signals etc.) can be used to trigger the function. In the digital output-dependent mode the function monitors the status of the selected output relay control signal.

Figure. 4.4.13 - 59. Simplified function block diagram of the CBFP function.

Measured input

The function block uses fundamental frequency component of phase current and residual current measurement values. The user can select I01, I02 or the calculated I0 for the residual current measurement.

Table. 4.4.13 - 119. Measurement inputs of the CBFP function.

Signal	Description	Time base
I _{L1} RMS	Fundamental frequency component of phase L1 (A) current measurement	5ms

Signal	Description	Time base
IL2RMS	Fundamental frequency component of phase L2 (B) current measurement	5ms
IL3RMS	Fundamental frequency component of phase L3 (C) current measurement	5ms
I ₀₁ RMS	Fundamental frequency component of residual input I01 measurement	5ms
I ₀₂ RMS	Fundamental frequency component of residual input I ₀₂ measurement	5ms
I _{0Calc}	Calculated residual current from the phase current inputs	5ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 4.4.13 - 120. CBFP monitoring signal definitions.

Name	Description
Signal in monitor	Defines which TRIP events of the used protection functions trigger the CBFP countdown. For the CBFP function to monitor the signals selected here, the "Operation mode selection" parameter must be set to a mode that includes signals (e.g. "Signals only", "Signals or DO", "Current and signals and DO").
Trip monitor	Defines which output relay of the used protection functions trigger the CBFP countdown. For the CBFP function to monitor the output relays selected here, the "Operation mode selection" parameter must be set to a mode that includes digital outputs (e.g. "DO only", "Current and DO", "Current or signals or DO").

Table. 4.4.13 - 121. General settings of the function.

Name	Range	Default	Description
CBFP LN mode	 On Blocked Test Test/ Blocked Off 	On	Set mode of CBF block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
CBFP force status to	 Normal Start ReTrip CBFP Blocked 	Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.

Pick-up settings

The setting parameters I_{set} and IO_{set} control the pick-up and the activation of the current-dependent CBFP function. They define the minimum allowed measured current before action from the function. The function constantly calculates the ratio between the I_{set} or the IO_{set} and the measured magnitude (I_m) for each of the three phases and the selected residual current input. The reset ratio of 97 % is built into the function and is always relative to the I_{set} value. The setting value is common for all measured phases. When the I_m exceeds the I_{set} value (in single, dual or all phases) it triggers the pick-up operation of the function.

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

Name	Range	Step	Default	Description
10Input	 Not in use I01 I02 I0Calc 	-	Not in use	Selects the residual current monitoring source, which can be either from the two separate residual measurements (I01 and I02) or from the phase current's calculated residual current.
Actmode	 Current only DO only Signals only Current and DO Current or DO Current or signals Current or Signals and DO Signals or DO Current or DO Current or DO Current or DO Current and DO Signals Current or DO Current and DO Signals Current and DO Signals Current and DO Signals 	-	Current only	Selects the operating mode. The mode can be dependent on current measurement, binary signal status, output relay status ("DO"), or a combination of the three.

Table. 4.4.13 - 123. Pick-up settings.

Name	Range	Step	Default	Description
I _{set}	0.0140.00×I _n	0.01×I _n	0.20×I _n	The pick-up threshold for the phase current measurement. This setting limit defines the upper limit for the phase current pick-up element.
10 _{set}	0.00540.000×I _n	0.001×I _n	1.200×I _n	The pick-up threshold for the residual current measurement. This setting limit defines the upper limit for the phase current pick-up element.

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Table 1 1 12	101	Information	diaplayad	by the	function
Table. 4.4.13 -	124.	inionnation	uispiayeu	Dy the	

Name	Range	Description		
CBFP LN behaviour	 On Blocked Test Test/ Blocked Off 	Displays the mode of CBF block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.		
CBFP condition	 Normal Start ReTrip CBFP On Blocked 	Displays status of the protection function.		

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and processes the release time characteristics similarly to when the pick-up signal is reset.

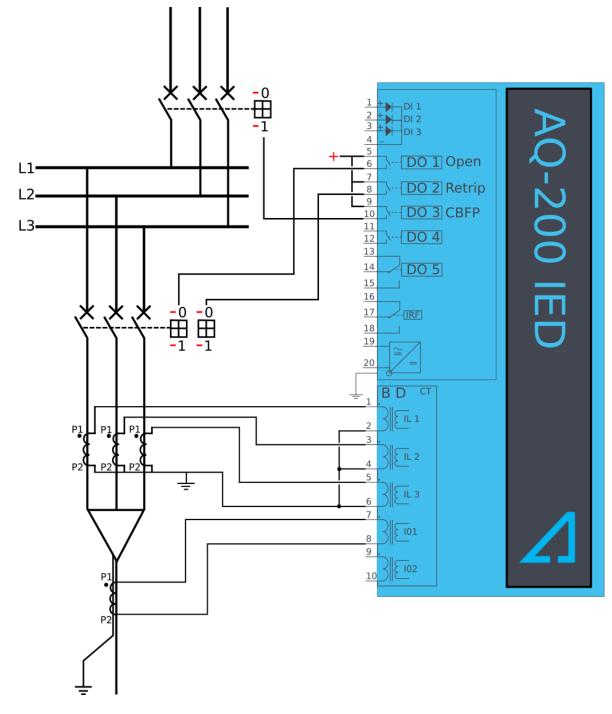
The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics

The operating timers' behavior during a function can be set depending on the application. The same pick-up signal starts both timers. When retrip is used the time grading should be set as follows: the sum of specific times (i.e. the retrip time, the expected operating time, and the pick-up conditions' release time) is shorter the set CBFP time. This way, when retripping another breaker coil clears the fault, any unnecessary function triggers are avoided.

The following table presents the setting parameters for the function's operating time characteristics.

Name	Range	Step	Default	Description
Retrip	• No • Yes	-	Yes	Retrip enabled or disabled. When the retrip is disabled, the output will not be visible and the TRetr setting parameter will not be available.


Table. 4.4.13 - 125. Setting parameters for operating time characteristics.

Name	Range	Step	Default	Description
Retrip time delay	0.0001800.000s	0.005s	0.100s	Retrip start the timer. This setting defines how long the starting condition has to last before a RETRIP signal is activated.
CBFP	0.0001800.000s	0.005s	0.200s	CBFP starts the timer. This setting defines how long the starting condition has to last before the CBFP signal is activated.

The following figures present some typical cases of the CBFP function.

Trip, Retrip and CBFP in the device configuration

Figure. 4.4.13 - 60. Wiring diagram when Trip, Retrip and CBFP are configured to the device.

The retrip functionality can be used in applications whose circuit breaker has a retrip or a redundant trip coil available. The TRIP signal is normally wired to the breaker's trip coil from the device's trip output. The retrip is wired from its own device output contact in parallel with the circuit breaker's redundant trip coil. The CBFP signal is normally wired from its device output contact to the incoming feeder circuit breaker. Below are a few operational cases regarding the various applications.

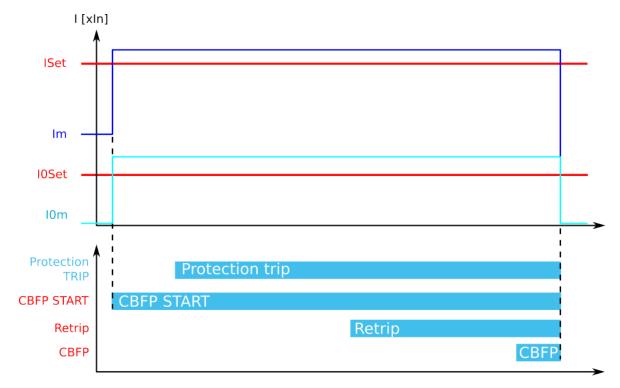


Figure. 4.4.13 - 61. Retrip and CBFP when "Current" is the selected criterion.

When the current threshold setting of *I_{set}* and/or *IO_{set}* is exceeded, the current-based protection is activated and the counters for RETRIP and CBFP start calculating the set operating time. The tripping of the primary protection stage is not monitored in this configuration. Therefore, if the current is not reduced below the setting limit, a RETRIP signal is sent to the redundant trip coil. If the current is not reduced within the set time limit, the function also sends a CBFP signal to the incoming feeder breaker. If the primary protection function clears the fault, both counters (RETRIP and CBFP) are reset as soon as the measured current is below the threshold settings.

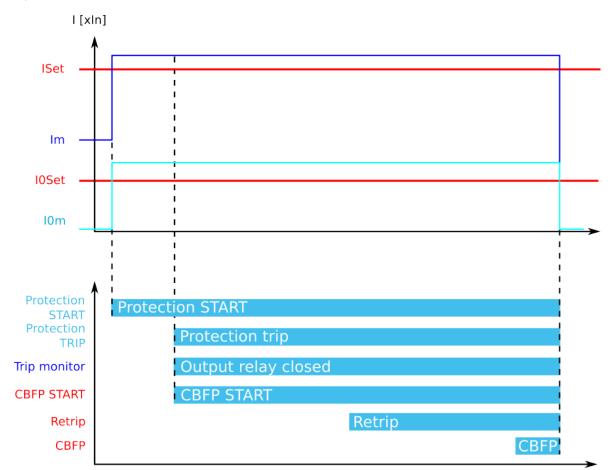
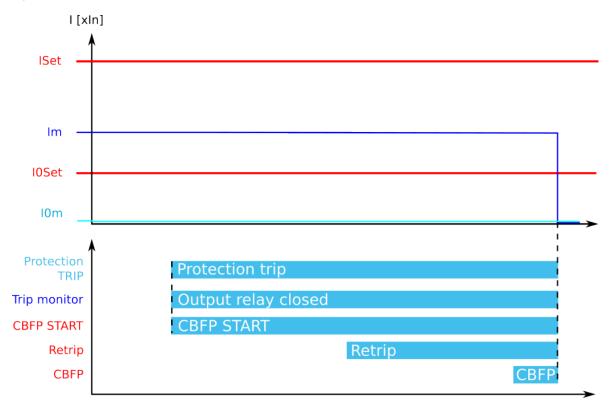
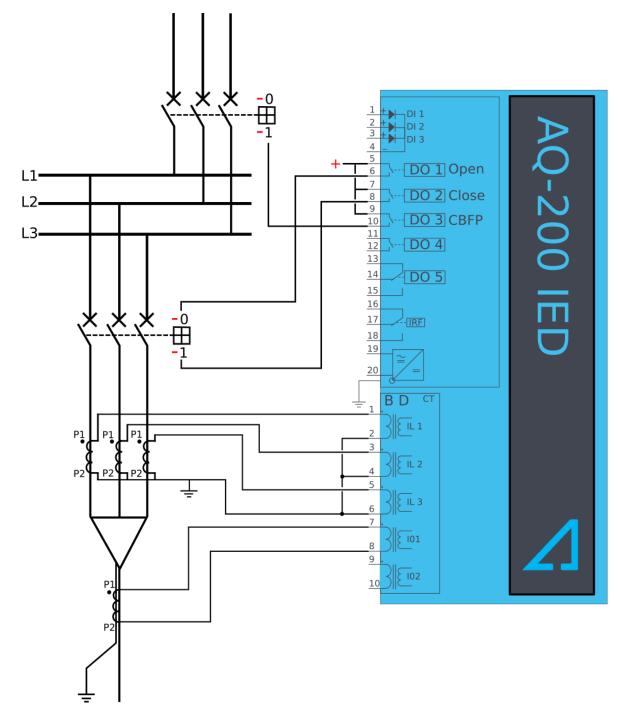
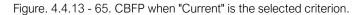



Figure. 4.4.13 - 62. Retrip and CBFP when "Current and DO" is the selected criterion.

When the current threshold setting of *I_{set}* and/or *IO_{set}* is exceeded, the current-based protection is activated. At the same time, the counters for RETRIP and CBFP are halted until the monitored output contact is controlled (that is, until the primary protection operates). When the tripping signal reaches the primary protection stage, the RETRIP and CBFP counters start calculating the set operating time. The tripping of the primary protection stage is constantly monitored in this configuration. If the current is not reduced below the setting limit or the primary stage tripping signal is not reset, a RETRIP signal is sent to the redundant trip coil. If the retripping fails and the current is not reduced below the setting limit or the primary protection function also sends a CBFP signal to the incoming feeder circuit breaker. If the primary protection function clears the fault, both counters (RETRIP and CBFP) are reset as soon as the measured current is below the threshold settings or the tripping signal is reset. This configuration allows the CBFP to be controlled with current-based functions alone, and other function trips can be excluded from the CBFP functionality.




When the current threshold setting of *I_{set}* and/or *I0_{set}* is exceeded, or the TRIP signal reaches the primary protection stage, the function starts counting down towards the RETRIP and CBFP signals. The tripping of the primary protection stage is constantly monitored in this configuration regardless of the current's status. The pick-up of the CBFP is active unless the current is reduced below the setting limit and the primary stage tripping signal is reset. If either of these conditions is met (i.e. the current is above the limit or the signal is active) for the duration of the set RETRIP time delay, a RETRIP signal is sent to the redundant trip coil. If either of the conditions is active for the duration of the set CBFP time delay, a CBFP signal is sent to the incoming feeder circuit breaker. If the primary protection function clears the fault, both counters (RETRIP and CBFP) are reset as soon as the measured current is below the threshold settings and the tripping signal is reset. This configuration allows the CBFP to be controlled with current-based functions alone, with added security from current monitoring. Other function trips can also be included in the CBFP functionality.

Trip and CBFP in the device configuration

Figure. 4.4.13 - 64. Wiring diagram when Trip and CBFP are configured to the device.

Probably the most common application is when the device's trip output controls the circuit breaker trip coil, while one dedicated CBFP contact controls the CBFP function. Below are a few operational cases regarding the various applications and settings of the CBFP function.

When the current threshold setting of *l_{set}* and/or *l0_{set}* is exceeded, the current-based protection is activated and the counter for CBFP starts calculating the set operating time. The tripping of the primary protection stage is not monitored in this configuration. Therefore, if the current is not reduced below the setting limit, a CBFP signal is sent to the incoming feeder circuit breaker. If the primary protection function clears the fault, the counter for CBFP resets as soon as the measured current is below the threshold settings.

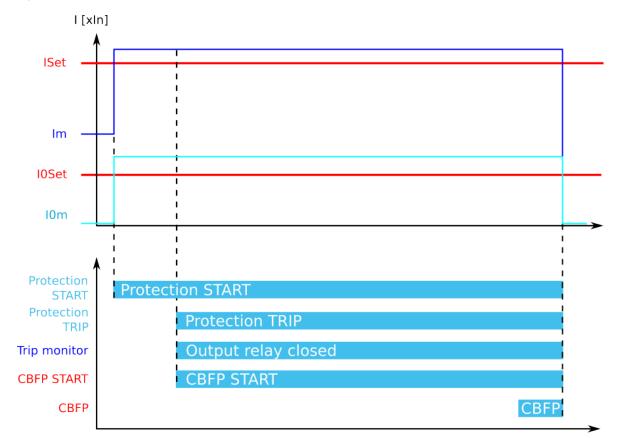
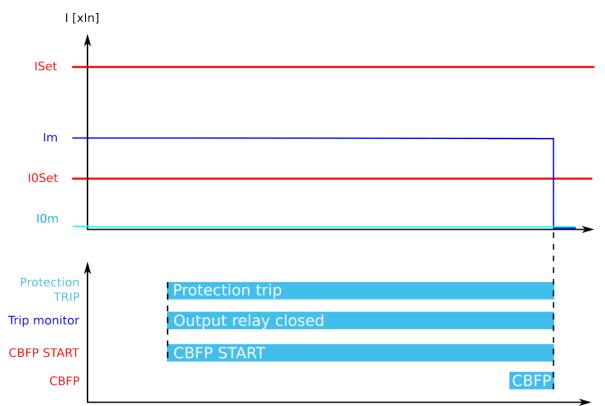
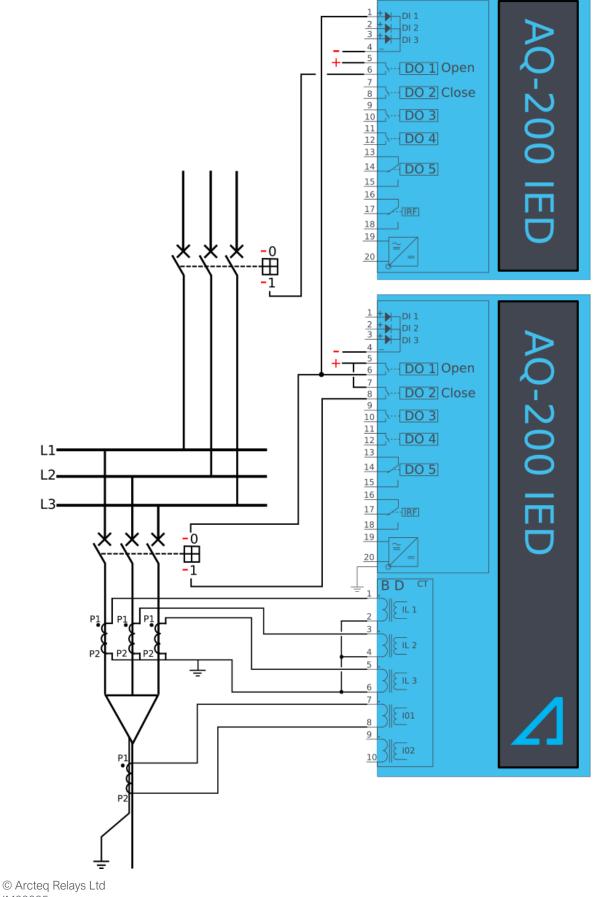



Figure. 4.4.13 - 66. CBFP when "Current and DO" is the selected criterion.

When the current threshold setting of *I_{set}* and/or *IO_{set}* is exceeded, the current-based protection is activated. At the same time, the counter for CBFP is halted until the monitored output contact is controlled (that is, until the primary protection operates). When the tripping signal reaches the primary protection stage, the CBFP counter starts calculating the set operating time. The tripping of the primary protection stage is constantly monitored in this configuration. If the current is not reduced below the setting limit or the primary stage tripping signal is not reset, a CBFP signal is sent to the incoming feeder circuit breaker. The time delay counter for CBFP is reset as soon as the measured current is below the threshold settings or the tripping signal is reset. This configuration allows the CBFP to be controlled by current-based functions alone, and other function trips can be excluded from the CBFP functionality.



When the current threshold setting of *I_{set}* and/or *I0_{set}* is exceeded, or the TRIP signal reaches the primary protection stage, the function starts counting down towards the CBFP signal. The tripping of the primary protection stage is constantly monitored in this configuration regardless of the current's status. The pick-up of the CBFP is active unless the current is reduced below the setting limit and the primary stage tripping signal is reset. If either of these conditions is met (i.e. the current is above the limit or the signal is active) for the duration of the set CBFP time delay, a CBFP signal is sent to the incoming feeder circuit breaker. The time delay counter for CBFP is reset as soon as the measured current is below the threshold settings and the tripping signal is reset. This configuration allows the CBFP to be controlled by current-based functions alone, with added security from current monitoring. Other function trips can also be included to the CBFP functionality.

Device configuration as a dedicated CBFP unit

Figure. 4.4.13 - 68. Wiring diagram when the device is configured as a dedicated CBFP unit.

Some applications require a dedicated circuit breaker protection unit. When the CBFP function is configured to operate with a digital input signal, it can be used in these applications. When a device is used for this purpose, the tripping signal is wired to the device's digital input and the device's own TRIP signal is used only for the CBFP purpose. In this application's incoming feeder the RETRIP and CBFP signals are also available with different sets of requirements. The RETRIP signal can be used for tripping the section's feeder breaker and the CBFP signal for tripping the incoming feeder. The following example does not use retripping and the CBFP signal is used as the incoming feeder trip from the outgoing breaker trip signal. The TRIP signal can also be transported between different devices by using GOOSE messages.

Figure. 4.4.13 - 69. Dedicated CBFP operation from digital input signal.

In this mode the CBFP operates only from a digital input signal. Both current and output relay monitoring can be used. The counter for the CBFP signal begins when the digital input is activated. If the counter is active until the CBFP counter is used, the device issues a CBFP command to the incoming feeder circuit breaker. In this application the device tripping signals from all outgoing feeders can be connected to one, dedicated CBFP device which operates either on current-based protection or on all possible faults' CBFP protection.

Events and registers

The circuit breaker failure protection function (abbreviated "CBF" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a resettable cumulative counters for RETRIP, CBFP, CBFP START and BLOCKED events.

Event block name	Event names
CBF1	Start ON
CBF1	Start OFF

Table. 4.4.13 - 126.	Event messages.
----------------------	-----------------

Event block name	Event names
CBF1	Retrip ON
CBF1	Retrip OFF
CBF1	CBFP ON
CBF1	CBFP OFF
CBF1	Block ON
CBF1	Block OFF
CBF1	DO monitor ON
CBF1	DO monitor OFF
CBF1	Signal ON
CBF1	Signal OFF
CBF1	Phase current ON
CBF1	Phase current OFF
CBF1	Res current ON
CBF1	Res current OFF

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for ACTIVATED, BLOCKED, etc. The table below presents the structure of the function's register content.

Register	Description	
Date and time	dd.mm.yyyy hh:mm:ss.mss	
Event	Event name	
Max phase current	Highest phase current	
Residual current	101, 102 channel or calculated residual current	
Time to RETR	Time remaining to retrip activation	
Time to CBFP	Time remaining to CBFP activation	
Setting group in use	Setting group 18 active	

Table. 4.4.13 - 127. Register content.

4.4.14 Low-impedance or high-impedance restricted earth fault/ cable end differential protection (I0d>; 87N)

The low-impedance or high-impedance restricted earth fault function is used for residual differential current measurement for transformers. This function can also be used as the cable end differential function. The operating principle is low-impedance differential protection with bias characteristics the user can set. A differential current is calculated with the sum of the phase currents and the selected residual current input. In cable end differential mode the function provides natural measurement unbalance compensation for higher operating sensitivity in monitoring cable end faults.

The restricted earth fault function constantly monitors phase currents and selected residual current instant values as well as calculated bias current and differential current magnitudes.

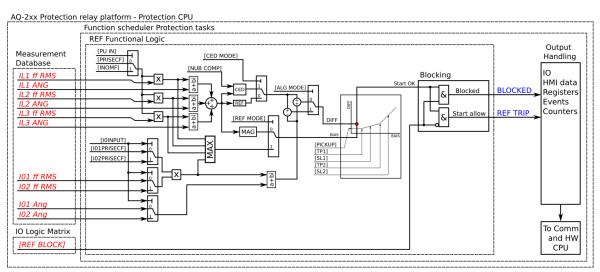


Figure. 4.4.14 - 70. Simplified function block diagram of the IOd> function.

Measured input

The function block uses fundamental frequency component of phase current and resisual current measurement values. Both calculated residual currents and measured residual currents are always used. The user can select either I₀₁ or I₀₂ for residual current measurement.

Please note that when the function is in cable end differential mode, the difference is only calculated when the measured I_0 current is available.

Signal	Description	Time base
IL1RMS	Fundamental frequency component of phase L1 (A) current measurement	5ms
IL2RMS	Fundamental frequency component of phase L2 (B) current measurement	5ms
I _{L3} RMS	Fundamental frequency component of phase L3 (C) current measurement	5ms
I ₀₁ RMS	Fundamental frequency component of residual input I01 measurement	5ms
I ₀₂ RMS	Fundamental frequency component of residual input I02 measurement	5ms
I _{L1} Ang	Angle of phase L1 (A) current	5ms

Table. 4.4.14 - 128. Measurement inputs of the IOd> function.

Signal	Description	Time base
IL2 Ang	Angle of phase L2 (B) current	5ms
IL3 Ang	Angle of phase L3 (C) current	5ms
I ₀₁ Ang	Angle of residual input I01	5ms
I ₀₂ Ang	Angle of residual input I02	5ms

General settings

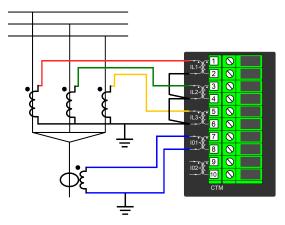
The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

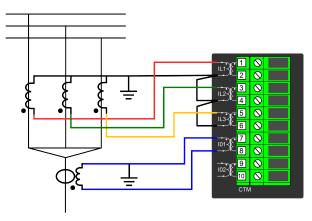
Table. 4.4.14 - 129. General settings.

Name	Range	Default	Description
I0d> LN mode	 On Blocked Test Test/ Blocked Off 	On	Set mode of NOC block. This parameter is visible only when <i>Allow setting of individual LN</i> <i>mode</i> is enabled in <i>General</i> menu.
I0d> force status to	NormalTripBlocked	Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
Restricted earth fault (REF) or Cable End Differential	• REF • CED	REF	Selection of the operating characteristics. If REF is selected, the function operates with normal accuracies. If CED is selected, the natural unbalance created by the phase current CT:s can be compensated for more sensitive operation. The default setting is REF.
Compenstate natural unbalance	• - • Comp	_	When activated while the line is energized, the currently present calculated residual current is compensated to 0. This compensation only has an effect in the CED mode.

Operating characteristics

The current-dependent pick-up and activation of the function are controlled by setting parameters, which define the current calculating method used as well as the operating characteristics.


Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.


Table. 4.4.14 - 130	. Pick-up settings.
---------------------	---------------------

	Name	Range	Step	Default	Description
IC) Input	I01I02	-	101	Selection of the used residual current measurement input.

Name	Range	Step	Default	Description
I0 Direction	AddSubtract	-	Add	Differential current calculation mode. This matches the directions of the calculated and measured residual currents to the application. The default setting (Add) means that IOCalc + IO1 or IOCalc + IO2 in a through fault yields no differential current. See figures below for connection examples.
Bias current calculation	 Residual current (310 + I0Calc)/2 Maximum (Phase and I0 max) 	-	Residual current	Selection of the bias current calculation. Differential characteristics biasing can use either the calculated residual current averages or the maximum of all measured currents. The residual current mode is more sensitive while the maximum current is coarser.
l0d> pick- up	0.0150.00% (of I _n)	0.01%	10%	Setting for basic sensitivity of the differential characteristics.
Turnpoint 1	0.0150.00×I _n	0.01×I _n	1.00×I _n	Setting for first turn point in the bias axe of the differential characteristics.
Slope 1	0.01150.00%	0.01%	10.00%	Setting for the first slope of the differential characteristics.
Turnpoint 2	0.0150.00×I _n	0.01×I _n	3.00×I _n	Setting for second turn point in the bias axe of the differential characteristics.
Slope 2	0.01250.00%	0.01%	40.00%	Setting for the second slope of the differential characteristics.

Figure. 4.4.14 - 71. "IO direction" parameter must be set to "Subtract" when current transformers are facing the same direction.

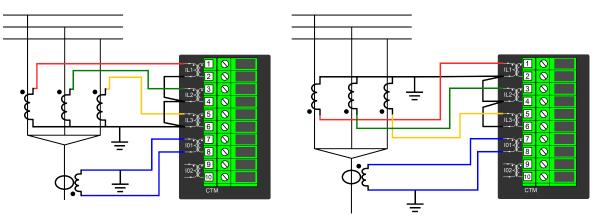


Figure. 4.4.14 - 72. "I0 direction" parameter must be set to "Add" when current transformers are facing each other or away from each other.

The following figure presents the differential characteristics with default settings.

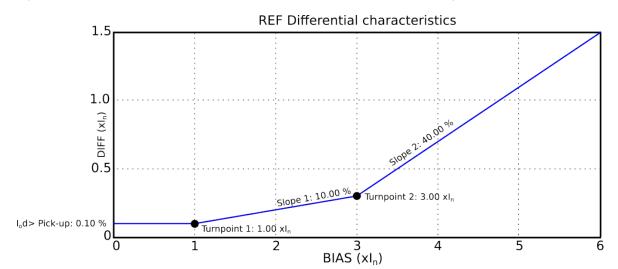


Figure. 4.4.14 - 73. Differential characteristics for the I0d> function with default settings.

The equations for the differential characteristics are the following:

Figure. 4.4.14 - 74. Differential current (the calculation is based on user-selected inputs and direction).

 $I_{Diff+I01} = (\overline{IL1} + \overline{IL2} + \overline{IL3}) + \overline{I01}$ $I_{Diff-I01} = (\overline{IL1} + \overline{IL2} + \overline{IL3}) - \overline{I01}$ $I_{Diff+I02} = (\overline{IL1} + \overline{IL2} + \overline{IL3}) + \overline{I02}$ $I_{Diff-I02} = (\overline{IL1} + \overline{IL2} + \overline{IL3}) - \overline{I02}$

Figure. 4.4.14 - 75. Bias current (the calculation is based on the user-selected mode).

 $I_{Bias\ average\ I01} = \frac{\left|\overline{IL1} + \overline{IL2} + \overline{IL3}\right| + \left|\overline{I01}\right|}{2}$ $I_{Bias\ average\ I02} = \frac{\left|\overline{IL1} + \overline{IL2} + \overline{IL3}\right| + \left|\overline{I02}\right|}{2}$ $I_{Bias\ max\ I01} = MAX(\left|IL1\right|, \left|IL2\right|, \left|IL3\right|, \left|I01\right|)$ $I_{Bias\ max\ I01} = MAX(\left|IL1\right|, \left|IL2\right|, \left|IL3\right|, \left|I02\right|)$

Figure. 4.4.14 - 76. Characteristics settings.

 $Diff_{bias < TP1} = I0_{d > pick-up}$

 $Diff_{biasTP1...TP2} = SL1 \times (Ix - TP1) + IO_{d > pick-up}$

 $Diff_{bias>TP2} = SL2 \times (Ix - TP2) + SL1 \times (TP2 - TP1) + I0_{d>pick-up}$

Read-only parameters

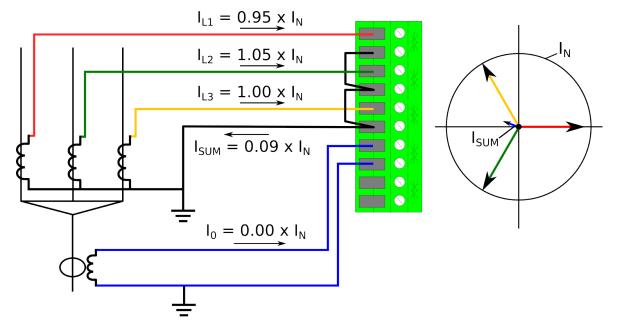
The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

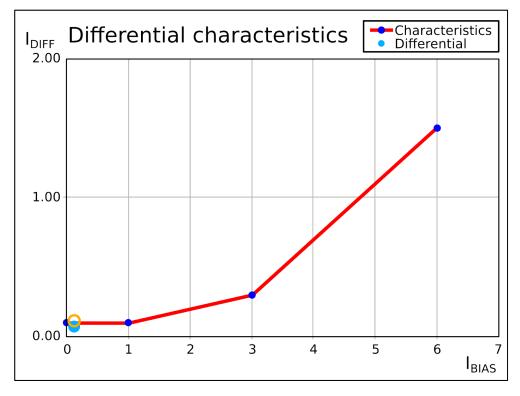
Table. 4.4.14 - 131. Information displayed by the function.

Name	Range	Description	
I0d> LN behaviour	 On Blocked Test Test/ Blocked Off 	Set mode of REF block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.	
I0d> condition	NormalTripBlocked	Displays the status of the protection function.	

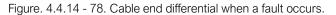
Function blocking

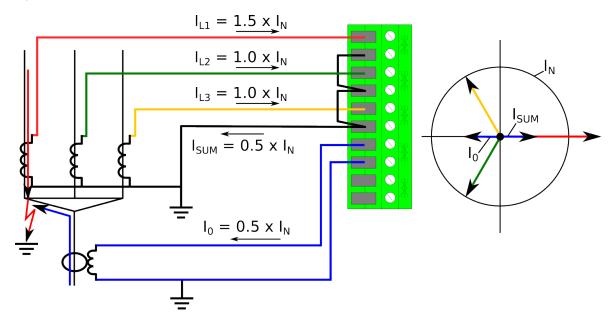
The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a TRIP signal is generated and the function proceeds to the time characteristics calculation.

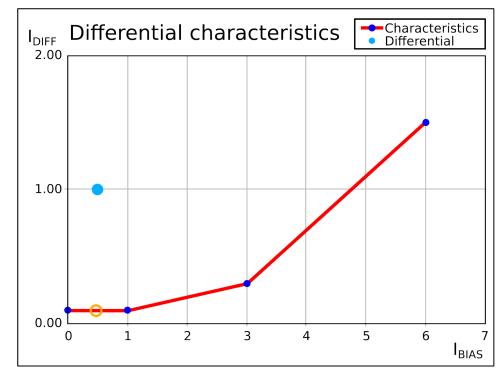

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the TRIP function has been activated before the blocking signal, it resets and processes the release time characteristics similarly to when the pick-up signal is reset.


The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

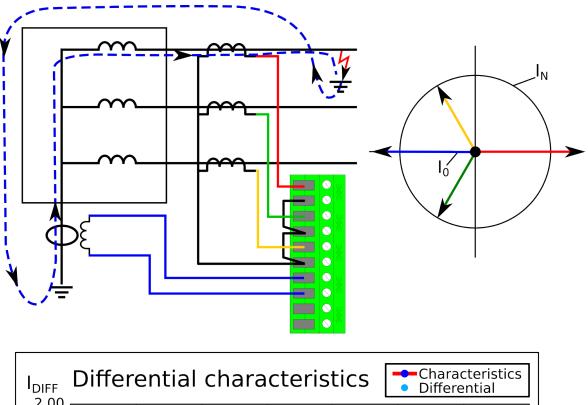
{{Default-Series}}. 4.4.14 - 1.

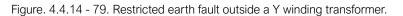

The following figures present some typical applications for this function.

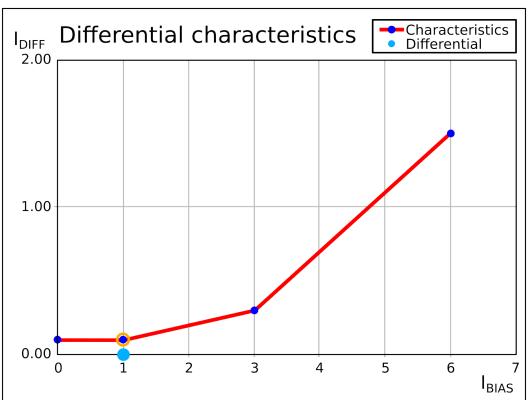




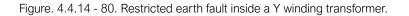
When calculating residual current from the phase currents, the natural unbalance can be around 10 % while the used CTs are still within the promised 5P class (which is probably the most common CT accuracy class). When the current natural unbalance is compensated in this situation, the differential settings may be set to be more sensitive and the natural unbalance does not, therefore, affect the calculation.

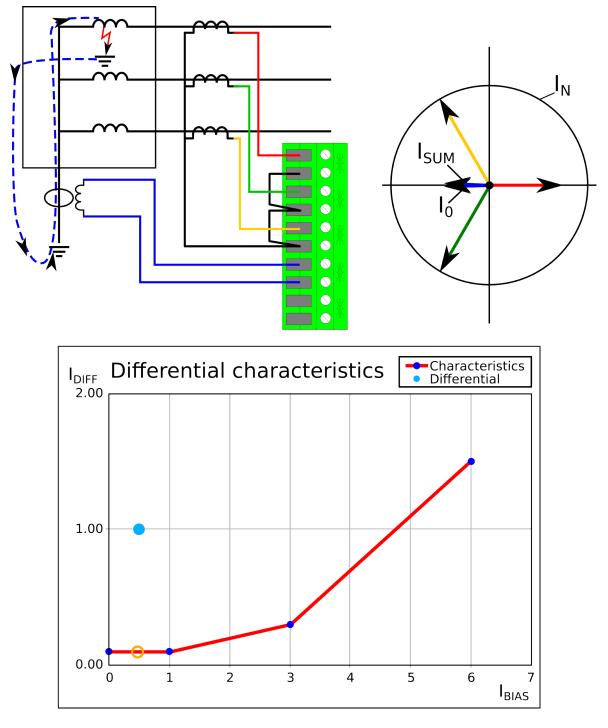






If a starting fault occurs in the cable end, the CED mode catches the difference between the ingoing and the outgoing residual currents. The resulting signal can be used for alarming or tripping purposes for the feeder with the failing cable end. The user can freely change both the settings and the sensitivity of the algorithm.


Restricted earth fault protection is usually used in the Y winding of a power transformer. This function is needed to prevent the main differential protection from being tripped by faults occurring outside the protection area; in some cases, the function has to be disabled or its sensitivity limited to catch earth faults inside the protection area. For this purpose, the restricted earth fault function is stable since it only monitors the side it is wired to, and compares the calculated and measured residual currents. During an outside earth fault the circulating residual current in the faulty phase winding does not cause a trip because the comparison of the measured starpoint current and the calculated residual current differential is close to zero.



If the fault is located inside of the transformer and thus inside of the protection area, the function catches the fault with high sensitivity. Since the measured residual current now flows in the opposite direction than in the outside fault situation, the measured differential current is high.

Events and registers

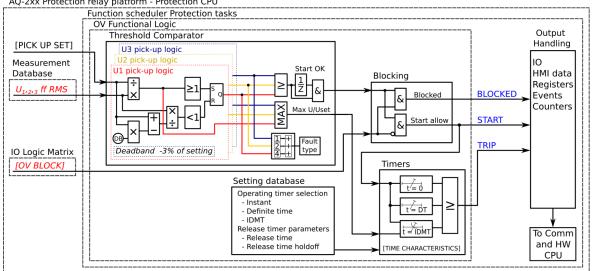
The restricted earth fault function (abbreviated "REF" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a resettable cumulative counter for the TRIP and BLOCKED events.

Table. 4.4.14 - 132. Event messages.

Event block name	Event names
REF1	10d> (87N) Trip ON
REF1	I0d> (87N) Trip OFF
REF1	I0d> (87N) Block ON
REF1	I0d> (87N) Block OFF

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for ACTIVATED, BLOCKED, etc. The table below presents the structure of the function's register content.


Table. 4.4.14 - 133. Register content.

Register	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
Trigger currents	 Biascurrent Diffcurrent Characteristics diff
Maximum trigger currents	 Biascurrent max Diffcurrent max Characteristics diff max
Residual currents	I0CalcI0 meas
Setting group in use	Setting group 18 active

4.4.15 Overvoltage protection (U>; 59)

The overvoltage function is used for instant and time-delayed overvoltage protection. Devices with a voltage protection module has four (4) available stages of the function (U>, U>>, U>>>, U>>>). The function constantly measures phase voltage magnitudes or line-to-line magnitudes.

Figure. 4.4.15 - 81. Simplified function block diagram of the U> function.

AQ-2xx Protection relay platform - Protection CPU

Measured input

The function block uses fundamental frequency component of line-to-line or line-to-neutral (as the user selects). If the protection is based on line-to-line voltage, overvoltage protection is not affected by earth faults in isolated or compensated networks.

Signal	Description	Time base
U _{L12} RMS	Fundamental frequency component of UL12/V voltage measurement	5ms
U _{L23} RMS	Fundamental frequency component of UL23/V voltage measurement	5ms
U _{L31} RMS	Fundamental frequency component of UL31/V voltage measurement	5ms
U _{L1} RMS	Fundamental frequency component of UL1/V voltage measurement	5ms
U _{L2} RMS	Fundamental frequency component of UL2/V voltage measurement	5ms
UL3RMS	Fundamental frequency component of UL3/V voltage measurement	5ms

Table. 4.4.15 - 135. Measured magnitude selection settings.

Name	Range	Default	Description
Measured magnitude	 P-P voltages P-E voltages U3 input (2LL- U3SS) U4 input (SS) 	P-P voltages	Selection of phase-to-phase or phase-to-earth voltages. Additionally, the U3 or U4 input can be assigned as the voltage channel to be supervised.

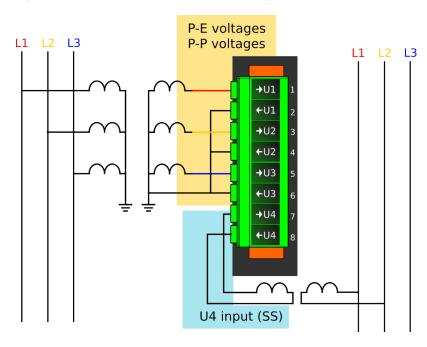


Figure. 4.4.15 - 82. Selectable measurement magnitudes with 3LN+U4 VT connection.

Figure. 4.4.15 - 83. Selectable measurement magnitudes with 3LL+U4 VT connection (P-E voltages not available without residual voltage).

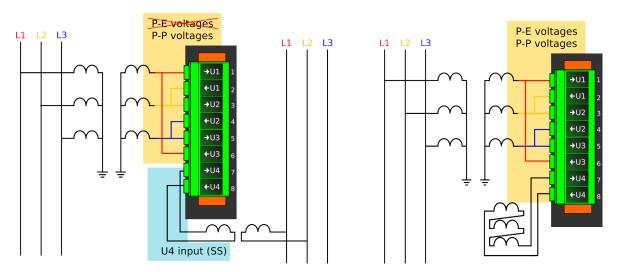
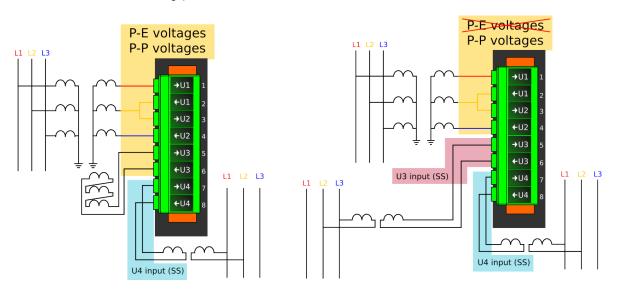



Figure. 4.4.15 - 84. Selectable measurement magnitudes with 2LL+U3+U4 VT connection (P-E voltages not available without residual voltage).

P-P Voltages and *P-E Voltages* selections follow phase-to-neutral or phase-to-phase voltages in the first three voltage channels (or two first voltage channels in the 2LL+U3+U4 mode). *U4 input* selection follows the voltage in Channel 4. *U3Input* selection only follows the voltage in Channel 3 if the 2LL+U3+U4 mode is in use.

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Name	Range	Default	Description	
U> LN mode	 On Blocked Test Test/ Blocked Off 	On	Set mode of OV block. This parameter is visible only when <i>Allow setting of individual LN mode</i> enabled in <i>General</i> menu.	
U> force status to	NormalStartTripBlocked	Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.	

Table. 4.4.15 - 136. General settings of the function.

Pick-up settings

The U_{set} setting parameter controls the pick-up of the U> function. This defines the maximum allowed measured voltage before action from the function. The function constantly calculates the ratio between the U_{set} and the measured magnitude (U_m) for each of the three voltages. The reset ratio of 97 % is built into the function and is always relative to the U_{set} value. The setting value is common for all measured amplitudes, and when the U_m exceeds the U_{set} value (in single, dual or all voltages) it triggers the pick-up operation of the function.

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

Table. 4.4.15 - 137. Pick-up settings.

Name	Range	Step	Default	Description
Operation mode	 1 voltage 2 voltages 3 voltages	-	1 voltage	Pick-up criteria selection
U _{set}	50.00150.00%U _n	0.01%U _n	105%U _n	Pick-up setting

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Table. 4.4.15 - 138. Information displayed by the function.

Name	Range	Step	Description
U> LN behaviour	 On Blocked Test Test/Blocked Off 	-	Displays the mode of OV block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
U< pick- up setting	0.01 000 000.0V	0.1V	The primary voltage required for tripping. The displayed pick-up voltage level depends on the pick-up setting and the voltage transformer settings.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs. When IDMT mode is used, the expected operating time depends on the measured voltage value. If the measured voltage changes during a fault, the expected operating time changes accordingly.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
U _{A(B)} _{meas} /U _{set} at the moment	0.001250.00Um/Uset	0.01Um/Uset	The ratio between U_{A} or U_{AB} voltage and the pick-up value.
U _{B(c)} _{meas} /U _{set} at the moment	0.001250.00U _m /U _{set}	0.01U _m /U _{set}	The ratio between U_{B} or U_{BC} voltage and the pick-up value.
UC(A) meas/Uset at the moment	0.001250.00U _m /U _{set}	0.01U _m /U _{set}	The ratio between U _C or U _{CA} voltage and the pick-up value.
U _{meas} /U _{set} at the moment	0.001250.00Um/Uset	0.01Um/Uset	The ratio between the measured voltage and the pick-up value.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

The operating timers' behavior during a function can be set for TRIP signal and also for the release of the function in case the pick-up element is reset before the trip time has been reached. There are three basic operating modes available for the function:

- Instant operation: gives the TRIP signal with no additional time delay simultaneously with the START signal.
- Definite time operation (DT): gives the TRIP signal after a user-defined time delay regardless of the measured voltage as long as the voltage is above the U_{set} value and thus the pick-up element is active (independent time characteristics).
- Inverse definite minimum time (IDMT): gives the TRIP signal after a time which is in relation to the set pick-up voltage *U*_{set} and the measured voltage *U*_m (dependent time characteristics).

The IDMT function follows this formula:

$$t = \frac{k}{\left(\frac{Um}{Us}\right)^a - 1}$$

Where:

- t = operating time
- *k* = time dial setting
- *U_m* = measured voltage
- U_s = pick-up setting
- *a* = IDMT Multiplier setting

The following table presents the setting parameters for the function's time characteristics.

Table. 4.4.15 - 139. Setting parameters for operating time characteristics.

1	Name	Range	Step	Default	Description
De typ	elay pe	DTIDMT	-	DT	Selection of the delay type time counter. The selection possibilities are dependent (IDMT, Inverse Definite Minimum Time) and independent (DT, Definite Time) characteristics.

Name	Range	Step	Default	Description
Definite operating time delay	0.000800.000s	0.005s	0.040s	Definite time operating delay. The setting is active and visible when DT is the selected delay type. When set to 0.000 s, the stage operates as instant stage without added delay. When the parameter is set to 0.0051800 s, the stage operates as independent delayed.
Time dial setting k	0.0160.00s	0.01s	0.05s	This setting is active and visible when IDMT is the selected delay type. Time dial/multiplier setting for IDMT characteristics.
IDMT Multiplier	0.0125.00s	0.01s	1.00s	This setting is active and visible when IDMT is the selected delay type. IDMT time multiplier in the U _m /U _{set} power.

Table. 4.4.15 - 140. Setting parameters for reset time characteristics.

Name	Range	Step	Default	Description
Release time delay	0.000150.000s	0.005s	0.06s	Resetting time. The time allowed between pick-ups if the pick-up has not led to a trip operation. During this time the START signal is held on for the timers if the delayed pick-up release is active.
Delayed pick-up release	• No • Yes	-	Yes	Resetting characteristics selection either as time-delayed or as instant after the pick-up element is released. If activated the START signal is reset after the set release time delay.
Time calc reset after release time	• No • Yes	-	Yes	Operating timer resetting characteristics selection. When active, the operating time counter is reset after a set release time if the pick-up element is not activated during this time. When disabled, the operating time counter is reset directly after the pick-up element is reset.
Continue time calculation during release time	• No • Yes	-	No	Time calculation characteristics selection. If activated, the operating time counter is continuing until a set release time has passed even if the pick-up element is reset.

Events and registers

The overvoltage function (abbreviated "OV" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

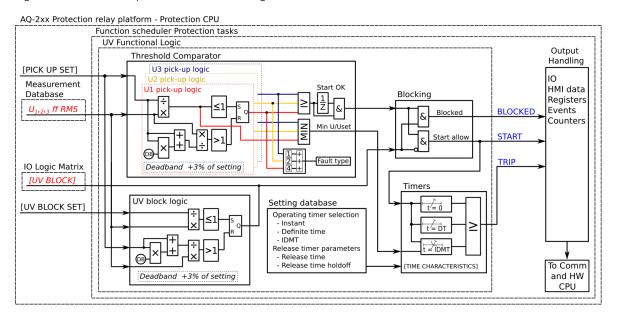
The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

The function offers four (4) independent stages; the events are segregated for each stage operation.

Table. 4.4.15 - 141. Event messages.

Event block name	Event names
OV1OV4	Start ON
OV1OV4	Start OFF
OV1OV4	Trip ON
OV1OV4	Trip OFF
OV1OV4	Block ON
OV1OV4	Block OFF

The function registers its operation into the last twelve (12) time-stamped registers; this information is available for all provided instances separately. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.


Table. 4.4.15 - 142. Register content.

Register	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
Fault type	L1-GL1-L2-L3
Pre-trigger voltage	Start/Trip -20ms voltage
Pre-fault voltage	Start -200ms voltage
Trip time remaining	0 ms1800s
Used SG	Setting group 18 active

4.4.16 Undervoltage protection (U<; 27)

The undervoltage function is used for instant and time-delayed undervoltage protection. Devices with a voltage protection module has four (4) available stages of the function (U>, U>>, U>>, U>>>, U>>>). The function constantly measures phase voltage magnitudes or line-to-line voltage magnitudes. Undervoltage protection has two blocking stages: internal blocking (based on voltage measurement and low voltage), or external blocking (e.g. during voltage transformer fuse failure).

Figure. 4.4.16 - 85. Simplified function block diagram of the U< function.

Measured input

The function block uses fundamental frequency component of line-to-line or line-to-neutral (as the user selects). If the protection is based on line-to-line voltage, undervoltage protection is not affected by earth faults in isolated or compensated networks.

Table. 4.4.16 - 143. Measurement input of the U> function.

Signal	Description	Time base
U _{L12} RMS	Fundamental frequency component of UL12/V voltage measurement	5ms
U _{L23} RMS	Fundamental frequency component of UL23/V voltage measurement	5ms
U _{L31} RMS	Fundamental frequency component of UL31/V voltage measurement	5ms
U _{L1} RMS	Fundamental frequency component of UL1/V voltage measurement	5ms
U _{L2} RMS	Fundamental frequency component of UL2/V voltage measurement	5ms
UL3RMS	Fundamental frequency component of UL3/V voltage measurement	5ms

Table. 4.4.16 - 144. Measured magnitude selection settings.

Name	Range	Default	Description
Measured magnitude	 P-P voltages P-E voltages U3 input (2LL- U3SS) U4 input (SS) 	P-P voltages	Selection of P-P or P-E voltages. Additionally, the U3 or U4 input can be assigned as the voltage channel to be supervised.

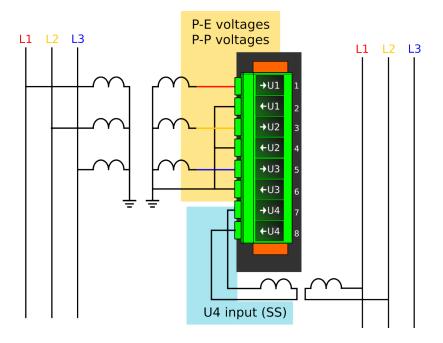


Figure. 4.4.16 - 86. Selectable measurement magnitudes with 3LN+U4 VT connection.

Figure. 4.4.16 - 87. Selectable measurement magnitudes with 3LL+U4 VT connection (P-E voltages not available without residual voltage).

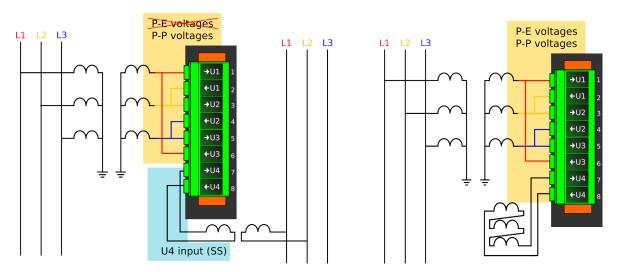
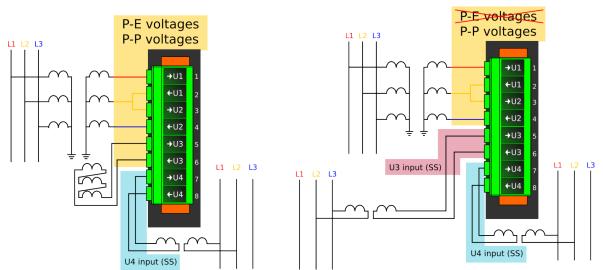



Figure. 4.4.16 - 88. Selectable measurement magnitudes with 2LL+U4 VT connection (P-E voltages not available without residual voltage).

P-P Voltages and *P-E Voltages* selections follow phase-to-neutral or phase-to-phase voltages in the first three voltage channels (or two first voltage channels in the 2LL+U3+U4 mode). *U4 input* selection follows the voltage in Channel 4. *U3Input* selection only follows the voltage in Channel 3 if the 2LL+U3+U4 mode is in use.

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Name	Range	Default	Description
U< LN mode	 On Blocked Test Test/ Blocked Off 	On	Set mode of UV block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
U< force status to	NormalStartTripBlocked	Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.

Table. 4.4.16 - 145. General settings of the function.

Pick-up settings

The U_{set} setting parameter controls the pick-up of the U< function. This defines the minimum allowed measured voltage before action from the function. The function constantly calculates the ratio between the U_{set} and the measured magnitude (U_m) for each of the three voltages. The reset ratio of 103 % is built into the function and is always relative to the U_{set} value. The setting value is common for all measured amplitudes, and when the U_m exceeds the U_{set} value (in single, dual or all voltages) it triggers the pick-up operation of the function.

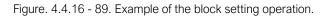

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.


Table. 4.4.16 - 146. Pick-up settings.

Name	Range	Step	Default	Description
Uset	0.00120.00%U _n	0.01%U _n	60%Un	Pick-up setting
U Block setting	0.00100.00%U _n	0.01%U _n	10%U _n	Block setting. If set to zero, blocking is not in use. The operation is explained in the next chapter.

Using Block setting to prevent nuisance trips

It is recommended to use the *Block setting* parameter to prevent the device from tripping in a situation where the network is de-energized. When the measured voltage drops below the set value, the device does not give a tripping signal. If the measured voltage has dropped below the *Block setting* parameter, the blocking continues until all of the line voltages have increased above the U< pick-up setting. Please see the image below for a visualization of this function. If the block level is set to zero (0), blocking is not in use.

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Table. 4.4.16 - 147.	Information	displayed b	v the function
	mormation	uispiayeu b	y the function.

Name	Range	Step	Description
U< LN behaviour	 On Blocked Test Test/Blocked Off 	-	Displays the mode of UV block. This parameter is visible only when <i>Allow setting of</i> <i>individual LN mode</i> is enabled in <i>General</i> menu.
U< pick- up setting	0.01 000 000.0V	0.1V	The primary voltage required for tripping. The displayed pick-up voltage level depends on the pick-up setting and the voltage transformer settings.

Name	Range	Step	Description
U< block setting	0.01 000 000.0V	0.1V	The primary voltage level required for trip blocking. If the measured voltage is below this value, the network is considered de-energized and the function will not trip. To deactivate the blocking the measured voltage must exceed the pick-up setting value.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs. When IDMT mode is used, the expected operating time depends on the measured voltage value. If the measured voltage changes during a fault, the expected operating time changes accordingly.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
U _{A(B)} _{meas} /U _{set} at the moment	0.001250.00Um/Uset	0.01Um/Uset	The ratio between U_{A} or U_{AB} voltage and the pick-up value.
U _{B(c)} _{meas} /U _{set} at the moment	0.001250.00Um/Uset	0.01Um/Uset	The ratio between U_{B} or U_{BC} voltage and the pick-up value.
U _{C(A)} meas/U _{set} at the moment	0.001250.00U _m /U _{set}	0.01Um/Uset	The ratio between U_C or U_{CA} voltage and the pick-up value.
U _{meas} /U _{set} at the moment	0.001250.00Um/Uset	0.01Um/Uset	The ratio between the lowest measured phase or line voltage and the pick-up value.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

The operating timers' behavior during a function can be set for TRIP signal and also for the release of the function in case the pick-up element is reset before the trip time has been reached. There are three basic operating modes available for the function:

 Instant operation: gives the TRIP signal with no additional time delay simultaneously with the START signal.

- Definite time operation (DT): gives the TRIP signal after a user-defined time delay regardless of the measured voltage as long as the voltage is above the U_{set} value and thus the pick-up element is active (independent time characteristics).
- Inverse definite minimum time (IDMT): gives the TRIP signal after a time which is in relation to the set pick-up voltage *U*_{set} and the measured voltage *U*_m (dependent time characteristics).

The IDMT function follows this formula:

$$t = \frac{k}{1 - \left(\frac{Um}{Us}\right)^a}$$

Where:

- *t* = operating time
- *k* = time dial setting
- *U_m* = measured voltage
- U_s = pick-up setting
- *a* = IDMT multiplier setting

The following table presents the setting parameters for the function's time characteristics.

T_{0} h_{0} h_{1} h_{1	Sotting parameters for	or operating time characteristics.
Table, 4.4, 10 - 140.	. Settinu parameters it	
	51	

Name	Range	Step	Default	Description
Delay type	• DT • IDMT	-	DT	Selection of the delay type time counter. The selection possibilities are dependent (IDMT, Inverse Definite Minimum Time) and independent (DT, Definite Time) characteristics.
Definite operating time delay	0.0001800.000s	0.005s	0.040s	Definite time operating delay. This setting is active and visible when DT is the selected delay type. When set to 0.000 s, the stage operates as instant stage without added delay. When the parameter is set to 0.0051800 s, the stage operates as independent delayed.
Time dial setting k	0.0160.00s	0.01s	0.05s	This setting is active and visible when IDMT is the selected delay type. Time dial/multiplier setting for IDMT characteristics.
IDMT Multiplier	0.0125.00s	0.01s	1.00s	This setting is active and visible when IDMT is the selected delay type. IDMT time multiplier in the U _m /U _{set} power.

Table. 4.4.16 - 149. Setting parameters for reset time characteristics.

Name	Range	Step	Default	Description
Release time delay	0.000150.000s	0.005s	0.06s	Resetting time. The time allowed between pick-ups if the pick-up has not led to a trip operation. During this time the START signal is held on for the timers if the delayed pick-up release is active.

Name	Range	Step	Default	Description
Delayed pick-up release	• No • Yes	-	Yes	Resetting characteristics selection, either time-delayed or instant after the pick-up element is released. If activated, the START signal is reset after a set release time delay.
Time calc reset after release time	• No • Yes	-	Yes	Operating timer resetting characteristics selection. When actived, the operating time counter is reset after a set release time if the pick-up element is not activated during this time. When disabled, the operating time counter is reset directly after the pick-up element reset.
Continue time calculation during release time	• No • Yes	-	No	Time calculation characteristics selection. If activated, the operating time counter continues until a set release time even when the pick-up element is reset.

Events and registers

The undervoltage function (abbreviated "UV" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

The function offers four (4) independent stages; the events are segregated for each stage operation.

Event block name	Event names
UV1UV4	Start ON
UV1UV4	Start OFF
UV1UV4	Trip ON
UV1UV4	Trip OFF
UV1UV4	Block ON
UV1UV4	Block OFF
UV1UV4	Undervoltage Block ON
UV1UV4	Undervoltage Block OFF

Table. 4.4.16 - 150. Event messages.

The function registers its operation into the last twelve (12) time-stamped registers; this information is available for all provided instances separately. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 4.4.16 - 151. Register content.

Register	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
Fault type	АА-В-С
Pre-trigger voltage	Start/Trip -20ms voltage
Fault voltage	Start/Trip voltage
Pre-fault voltage	Start -200ms voltage
Trip time remaining	0 ms1800s
Used SG	Setting group 18 active

4.4.17 Neutral overvoltage protection (U0>; 59N)

The neutral overvoltage function is used for non-directional instant and time-delayed earth fault protection.

Below is the formula for symmetric component calculation (and therefore to zero sequence voltage calculation).

 $U0 = 1/3(U_{L1} + U_{L2} + U_{L3})$

 $U_{L1...3}$ = Line to neutral voltages

Below are some examples of zero sequence calculation.

Figure. 4.4.17 - 90. Normal situation.

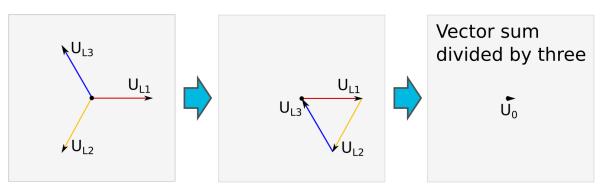


Figure. 4.4.17 - 91. Earth fault in isolated network.

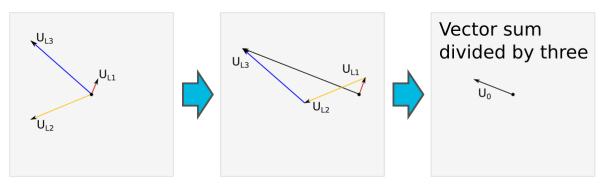


Figure. 4.4.17 - 92. Close-distance short-circuit between phases 1 and 3.

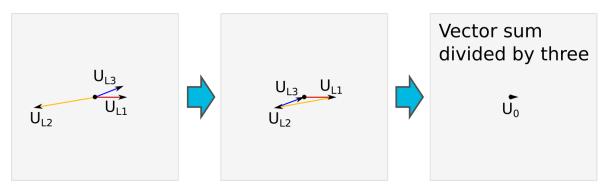
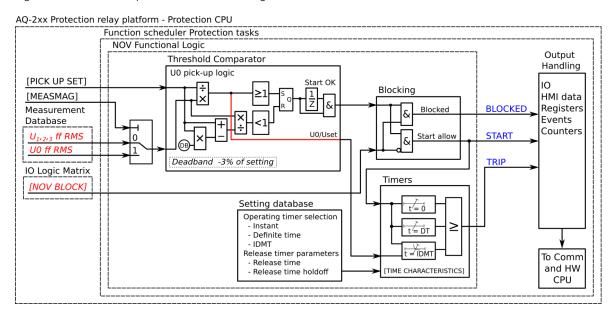



Figure. 4.4.17 - 93. Simplified function block diagram of the U0> function.

Measured input

The function block uses phase-to-neutral voltage magnitudes or calculated zero sequence component (as the user selects). Neutral overvoltage protection is scaled to line-to-line RMS level. When the line-to-line voltage of a system is 100 V in the secondary side, the earth fault is 100 % of the U_n and the calculated zero sequence voltage reaches $100/\sqrt{3}$ V = 57.74 V.

The selection of the used measurement channel is made with a setting parameter.

Table. 4.4.17 - 152. Measurement inputs of the U0> function.

Signal	Description	Time base
U ₀ RMS	Fundamental frequency component of U0/V voltage measurement	5ms
U _{L1} RMS	Fundamental frequency component of UL1/V voltage measurement	5ms
U _{L2} RMS	Fundamental frequency component of UL2/V voltage measurement	5ms
U _{L3} RMS	Fundamental frequency component of UL3/V voltage measurement	5ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Name	Range	Default	Description	
U0> LN mode	 On Blocked Test Test/ Blocked Off 	On	Set mode of NOV block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.	
U0> force status to	NormalStartTripBlocked	Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.	
U0> meas input select	 Select U0Calc U3 Input U4 Input 	Select	Defines which available measured magnitude is used by the function. U0Calc calculates the voltage from phase voltages. Please note that U3 Input and U4 Input selections are available only if t channel has been set to U0 mode at <i>Measurements</i> \rightarrow <i>Transformers</i> – <i>module</i> .	

Pick-up settings

The U_{set} setting parameter controls the pick-up of the U0> function. This defines the maximum allowed measured voltage before action from the function. The function constantly calculates the ratio between the U_{set} and the measured magnitude (U_m) for neutral voltage. The reset ratio of 97 % is built into the function and is always relative to the U_{set} value. The setting value is common for all measured amplitudes, and when the U_m exceeds the U_{set} value it triggers the pick-up operation of the function.

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

Table. 4.4.17 - 154. Pick-up settings.

Name	Range	Step	Default	Description
Pick-up setting U0set>	1.0099.00%U _n	0.01%U _n	20.00%U _n	Pick-up setting

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Name	Range	Step	Description
U0> LN mode behaviour	 On Blocked Test Test/Blocked Off 	-	Displays the mode of NOV block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
U0> Measuring now	 No U0 avail! U0Calc U3 Input U4 Input 	-	Displays which voltage channel is used by the function. If no voltage channel has been selected the function defaults to calculated residual voltage if line-to-neutral voltages have been connected to device. If no channel is set to "U0" mode and line-to-line voltages are connected, no residual voltage is available and "No U0 avail!" will be displayed.
U0> Pick- up setting	0.01 000 000.0V	0.1V	Primary voltage required for tripping. The displayed pick-up voltage level depends on the chosen U0 measurement input selection, on the pick-up settings and on the voltage transformer settings.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs. When IDMT mode is used, the expected operating time depends on the measured voltage value. If the measured voltage changes during a fault, the expected operating time changes accordingly.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
U _{meas} /U _{set} at the moment	0.001250.00	0.01	The ratio between the measured or calculated neutral voltage and the pick-up value.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

The operating timers' behavior during a function can be set for TRIP signal and also for the release of the function in case the pick-up element is reset before the trip time has been reached. There are three basic operating modes available for the function:

- Instant operation: gives the TRIP signal with no additional time delay simultaneously with the START signal.
- Definite time operation (DT): gives the TRIP signal after a user-defined time delay regardless of the measured or calculated voltage as long as the voltage is above the Uset value and thus the pickup element is active (independent time characteristics).
- Inverse definite minimum time (IDMT): gives the TRIP signal after a time which is in relation to the set pick-up voltage *U*_{set} and the measured voltage *U*_m (dependent time characteristics).

The IDMT function follows this formula:

$$t = \frac{k}{\left(\frac{Um}{Us}\right)^a - 1}$$

Where:

- *t* = operating time
- *k* = time dial setting
- U_m = measured voltage
- U_s = pick-up setting
- *a* = IDMT multiplier setting

The following table presents the setting parameters for the function's time characteristics.

Name	Range	Step	Default	Description
Delay type	DT IDMT	-	DT	Selection of the delay type time counter. The selection possibilities are dependent (IDMT, Inverse Definite Minimum Time) and independent (DT, Definite Time) characteristics.
Definite operating time delay	0.0001800.000s	0.005s	0.040s	Definite time operating delay. The setting is active and visible when DT is the selected delay type. When set to 0.000 s, the stage operates as instant without added delay. When the parameter is set to 0.0051800 s, the stage operates as independent delayed.
Time dial setting k	0.0160.00s	0.01s	0.05s	The setting is active and visible when IDMT is the selected delay type. Time dial/multiplier setting for IDMT characteristics.
IDMT Multiplier	0.0125.00s	0.01s	1.00s	The setting is active and visible when IDMT is the selected delay type. IDMT time multiplier in the U _m /U _{set} power.

Table. 4.4.17 - 156. Setting parameters for reset time characteristics.

Name	Range	Step	Default	Description
Release time delay	0.000150.000s	0.005s	0.06s	Resetting time. Time allowed between pick-ups if the pick-up has not led to a trip operation. During this time the START signal is held on for the timers if the delayed pick-up release is active.
Delayed pick-up release	• No • Yes	-	Yes	Resetting characteristics selection either as time-delayed or as instant after the pick-up element is released. If activated, the START signal is reset after a set release time delay.
Time calc reset after release time	• No • Yes	-	Yes	Operating timer resetting characteristics selection. When active, the operating time counter is reset after a set release time if the pick-up element is not activated during this time. When disabled, the operating time counter is reset directly after the pick-up element reset.
Continue time calculation during release time	• No • Yes	-	No	Time calculation characteristics selection. If activated, the operating time counter continues until a set release time has passed even if the pick-up element is reset.

The user can reset characteristics through the application. The default setting is a 60 ms delay; the time calculation is held during the release time.

In the release delay option the operating time counter calculates the operating time during the release. When using this option the function does not trip if the input signal is not re-activated while the release time count is on-going.

Events and registers

The neutral overvoltage function (abbreviated "NOV" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a cumulative counter for the START, TRIP and BLOCKED events.

The function offers four (4) independent stages; the events are segregated for each stage operation.

Event block name	Event names
NOV1NOV4	Start ON
NOV1NOV4	Start OFF
NOV1NOV4	Trip ON
NOV1NOV4	Trip OFF
NOV1NOV4	Block ON
NOV1NOV4	Block OFF

Table. 4.4.17 - 157. Event messages.

The function registers its operation into the last twelve (12) time-stamped registers; this information is available for all provided instances separately. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 4.4.17 - 158. Register content.

Register	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
Fault type	L1-GL1-L2-L3
Pre-trigger voltage	Start/Trip -20ms voltage
Fault voltage	Start/Trip voltage
Pre-fault voltage	Start -200ms voltage
Trip time remaining	0 ms1800s
Setting group in use	Setting group 18 active

4.4.18 Sequence voltage protection (U1/U2>/<; 47/27P/59PN)

The sequence voltage function is used for instant and time-delayed voltage protection. It has positive and negative sequence protection for both overvoltage and undervoltage (the user selects the needed function). The user can select the voltage used. Sequence voltage is based on the system's line-to-line voltage level. Protection stages can be set to protect against either undervoltage or overvoltage.

Positive sequence voltage calculation

Below is the formula for symmetric component calculation (and therefore to positive sequence voltage calculation).

 $U1 = \frac{1}{3} (U_{L1} + aU_{L2} + a^2 U_{L3})$ $a = 1 \angle 120^{\circ}$ $a^2 = 1 \angle 240^{\circ}$ $U_{L1...3} = Line to neutral voltages$

In what follows are three examples of positive sequence calculation (positive sequence component vector).

Figure. 4.4.18 - 94. Normal situation.

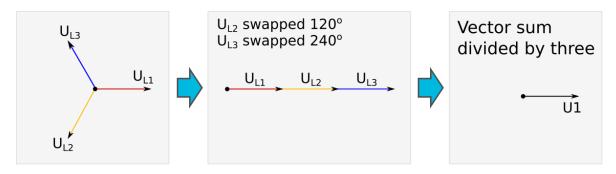


Figure. 4.4.18 - 95. Earth fault in an isolated network.

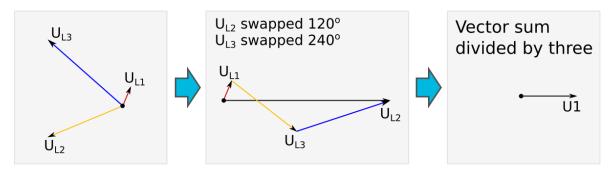


Figure. 4.4.18 - 96. Close-distance short-circuit between phases 1 and 3.

Negative sequence voltage calculation

Below is the formula for symmetric component calculation (and therefore to negative sequence voltage calculation).

$$U2 = \frac{1}{3} (U_{L1} + a^2 U_{L2} + a U_{L3})$$
$$a = 1 \angle 120^{\circ}$$
$$a^2 = 1 \angle 240^{\circ}$$

 $U_{L1\dots 3} = Line \ to \ neutral \ voltages$

In what follows are three examples of negative sequence calculation (negative sequence component vector).

Figure. 4.4.18 - 97. Normal situation.

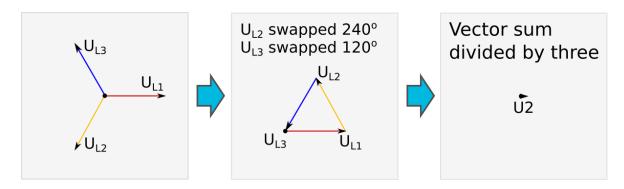


Figure. 4.4.18 - 98. Earth fault in isolated network.

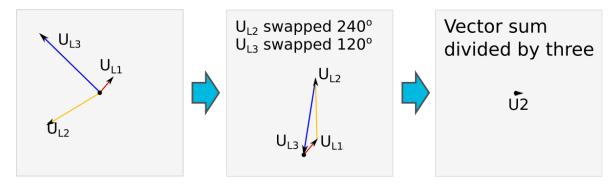
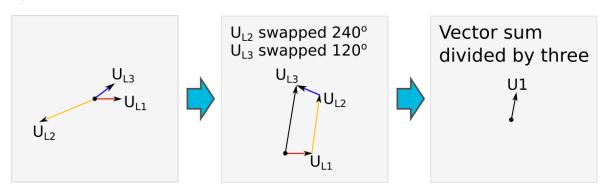
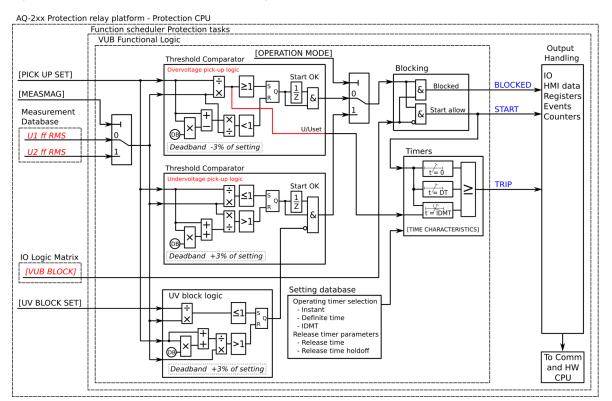




Figure. 4.4.18 - 99. Close-distance short-circuit between phases 1 and 3.

Figure. 4.4.18 - 100. Simplified function block diagram of the U1/U2>/< function.

Measured input

The function block uses fundamental frequency component of phase-to-phase, phase-to-neutral and zero sequence voltage measurements. The user can select the monitored magnitude to be either positive sequence voltage or negative sequence voltage values.

Table. 4.4.18 - 159. Measurement inputs of the U1/U2>/< function.

Signal	Description	Time base
U1RMS	Fundamental frequency component of U1/V voltage channel	5ms
U ₂ RMS	Fundamental frequency component of U ₂ /V voltage channel	5ms
U ₃ RMS	Fundamental frequency component of U ₃ /V voltage channel	5ms
U4RMS	Fundamental frequency component of U4/V voltage channel	5ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 4.4.18 - 160. General settings of the function.

Name	Range	Default	Description
U1/2 >/< LN mode	 On Blocked Test Test/Blocked Off 	On	Set mode of VUB block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
U1/2 >/< force status to	 Normal Start Trip Blocked 		Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
Measured magnitude	 U1 Positive sequence voltage U2 Negative sequence voltage 	U1 Positive sequence voltage	Selects which calculated voltage is supervised.

Pick-up settings

The U_{set} setting parameter controls the pick-up of the U1/U2>/< function. This defines the maximum or minimum allowed calculated U1 or U2 voltage before action from the function. The function constantly calculates the ratio between the U_{set} and the calculated U1 or U2 magnitude (U_c). The monitored voltage is chosen in the *Info* page with the parameter *Measured magnitude*. The reset ratio of 97 % in overvoltage applications is built into the function and is always relative to the U_{set} value. The reset ratio of 103 % in undervoltage applications is built into the function and is always relative to the U_{set} value. When the U_c goes above or below the U_{set} value it triggers the pick-up operation of the function.

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

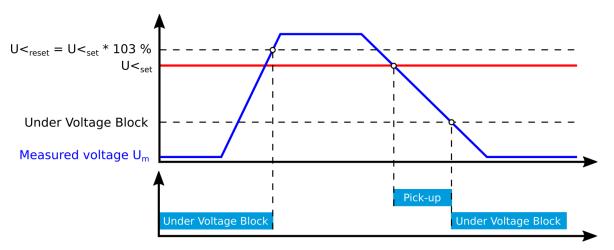

Name	Range	Step	Default	Description
Pick- up terms	Over >Under	-	Over>	Selects whether the function picks-up when the monitored voltage is under or over the set pick-up value.
Uset	5.00150.00%U _n	0.01%U _n	105%U _n	Pick-up setting
U _{blk}	0.0080.00%U _n	0.01%U _n	5%U _n	Undervoltage blocking (visible when the pick-up term is Under<)

Table. 4.4.18 - 161. Pick-up settings.	Table
--	-------

Using Block setting to prevent nuisance trips

It is recommended to use the *Under block setting* U_{blk} parameter when Under< is the chosen tripping condition to prevent the function from tripping in a situation where the network is de-energized. When the measured voltage drops below the set value, the function does not give a tripping signal. If the measured voltage has dropped below the *Under block setting* U_{blk} parameter, the blocking continues until all of the line voltages have increased above the U< pick-up setting. Please see the image below for a visualization of this function. If the block level is set to zero (0), blocking is not in use.

Figure. 4.4.18 - 101. Example of the block setting operation.

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Name	Range	Step	Description
U1/2 >/< LN behaviour	 On Blocked Test Test/Blocked Off 	-	Displays the mode of VUB block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
U1/2 >/< Pick-up setting	0.01 000 000.0V	0.1V	The primary voltage required for tripping. The displayed pick-up voltage level depends on the pick-up setting and the voltage transformer settings.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs. When IDMT mode is used, the expected operating time depends on the measured voltage value. If the measured voltage changes during a fault, the expected operating time changes accordingly.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
U _{meas} /U _{set} at the moment	0.001250.00U _m /U _{set}	0.01U _m /U _{set}	The ratio between the measured voltage and the pick-up value.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

The operating timers' behavior during a function can be set for TRIP signal and also for the release of the function in case the pick-up element is reset before the trip time has been reached. There are three basic operating modes available for the function:

- Instant operation: gives the TRIP signal with no additional time delay simultaneously with the START signal.
- Definite time operation (DT): gives the TRIP signal after a user-defined time delay regardless of the measured or calculated voltage as long as the voltage is above the U_{set} value and thus the pickup element is active (independent time characteristics).
- Inverse definite minimum time (IDMT): gives the TRIP signal after a time which is in relation to the set pick-up voltage *U*_{set} and the measured voltage *U*_m (dependent time characteristics).

The IDMT function follows one of the following formulas:

Overvoltage Undervoltage
$$t = \frac{k}{\left(\frac{Um}{Us}\right)^a - 1}$$
 $t = \frac{k}{1 - \left(\frac{Um}{Us}\right)^a}$

Where:

- *t* = operating time
- k = time dial setting
- U_m = measured voltage
- U_s = pick-up setting
- *a* = IDMT multiplier setting

The following table presents the setting parameters for the function's time characteristics.

Name	Range	Step	Default	Description
Delay type	• DT • IDMT	-	DT	Selection of the delay type time counter. The selection possibilities are dependent (IDMT, Inverse Definite Minimum Time) and independent (DT, Definite Time) characteristics.
Definite operating time delay	0.0001800.000s	0.005s	0.040s	Definite time operating delay. The setting is active and visible when DT is the selected delay type. When set to 0.000 s, the stage operates as instant without added delay. When the parameter is set to 0.0051800 s, the stage operates as independent delayed.

Name	Range	Step	Default	Description
Time dial setting k	0.0160.00s	0.01s	0.05s	The setting is active and visible when IDMT is the selected delay type. Time dial/multiplier setting for IDMT characteristics.
IDMT Multiplier	0.0125.00s	0.01s	1.00sThe setting is active and visible when IDMT is the set delay type. IDMT time multiplier in the Um/Uset power.	

Table. 4.4.18 - 164. Setting parameters for reset time characteristics.

Name	Range	Step	Default	Description
Release time delay	0.000150.000s	0.005s	0.06s	Resetting time. Time allowed between pick-ups if the pick-up has not led to a trip operation. During this time the START signal is held on for the timers if the delayed pick-up release is active.
Delayed pick-up release	• No • Yes	-	Yes	Resetting characteristics selection either as time-delayed or as instant after the pick-up element is released. If activated, the START signal is reset after a set release time delay.
Time calc reset after release time	• No • Yes	-	Yes	Operating timer resetting characteristics selection. When active, the operating time counter is reset after a set release time if the pick-up element is not activated during this time. When disabled, the operating time counter is reset directly after the pick-up element reset.
Continue time calculation during release time	• No • Yes	-	No	Time calculation characteristics selection. If activated, the operating time counter continues until a set release time has passed even if the pick-up element is reset.

The user can reset characteristics through the application. The default setting is a 60 ms delay; the time calculation is held during the release time.

In the release delay option the operating time counter calculates the operating time during the release. When using this option the function does not trip if the input signal is not re-activated while the release time count is on-going.

Events and registers

The sequence voltage function (abbreviated "VUB" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

The function's outputs can be used for direct I/O controlling and user logic programming. The function also a resettable cumulative counter for the START, TRIP and BLOCKED events.

The function offers four (4) independent stages; the events are segregated for each stage operation.

Table. 4.4.18 - 165. Event messages.

Event block name	Event names
VUB1VUB4	Start ON
VUB1VUB4	Start OFF
VUB1VUB4	Trip ON
VUB1VUB4	Trip OFF
VUB1VUB4	Block ON
VUB1VUB4	Block OFF

The function registers its operation into the last twelve (12) time-stamped registers; this information is available for all provided instances separately. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 4.4.18 - 166. Register content.

Register	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
Pre-trigger voltage	Start/Trip -20ms voltage
Fault voltage	Start/Trip voltage
Pre-fault voltage	Start -200ms voltage
Trip time remaining	0 ms1800s
Setting group in use	Setting group 18 active

4.4.19 Overfrequency and underfrequency protection (f>/<; 81O/81U)

The frequency protection function can be used both in overfrequency and in underfrequency situations, and it has four (4) stages for both. Frequency protection can be applied to protect feeder, bus, transformer, motor and generator applications. The difference between the generated power and the load demand can cause the frequency to drop below or rise above the allowed level. When the consumption is larger than the generated power, the frequency may drop. When more power is generated than is consumed, overfrequency can occur.

In generator applications too big a load or a malfunction in the power controller can cause the frequency to decrease. Underfrequency causes damage to turbine wings through vibration as well as heating due to increased iron losses, dropped cooling efficieny and over-magnetization in step-up transformers. Overfrequency protection prevents the generator from running too fast which can cause damage to the generator turbine.

Underfrequency and overfrequency protection can be used as an indicator of an accidental island operation in distributed generation and in some consumers (as it is unlikely that the consumed and generated power are the same). Overfrequency is also often used to control power generation to keep the system's frequency consistent.

Each stage can be activated and deactivated individually. After the f>/< mode has been activated (*Protection* \rightarrow *Stage activation* \rightarrow *Frequency stages*), the user can activate and deactivate the individual stages at will (*Protection* \rightarrow *Frequency* \rightarrow *Frequency protection* $f > < \rightarrow$ *INFO* \rightarrow *Stage operational setup*).

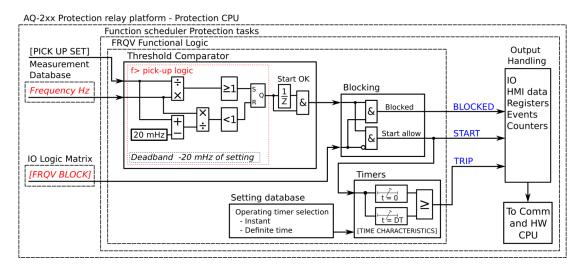
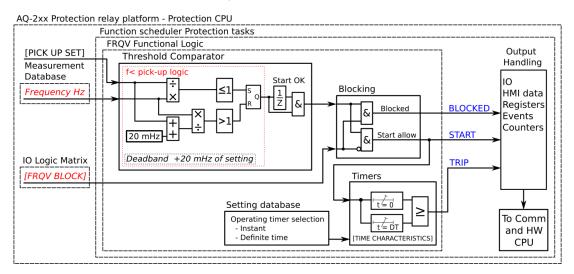



Figure. 4.4.19 - 102. Simplified function block diagram of the f> function.

Figure. 4.4.19 - 103. Simplified function block diagram of the f< function.

Measured input

The frequency protection function compares the measured frequency to the pick-up setting (given in Hz). There are three (3) frequency references available. Please refer to "Frequency tracking and scaling" chapter for a detailed description of frequency tracking.

Signals	Description	Time base
Frequency reference 1	Primary frequency reference	5ms
Frequency reference 2	Secondary frequency reference	5ms
Frequency reference 3	Tertiary frequency reference	5ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

			-			
Table.	4.4.19 -	168.	General	settinas	of the	function.
iabio.	1.1.10	100.	Contortai	oounigo	01 1110	Turio ciori

Name	Range	Default	Description
f LN mode	 On Blocked Test Test/ Blocked Off 	On	Set mode of FRQV block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
f> enable f>> enable f>>> enable f>>>> enable f< enable f<< enable f<<< enable f<<< enable f<<< enable	• No • Yes	No	Enables or disables the stage.
f> force status to f>> force status to f>>> force status to f<>>>> force status to f< force status to f<< force status to f<<< force status to f<<< force status to f<<< force	 Normal Start Trip Blocked 	Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.

Pick-up settings

The f_{set} , f_{set} , etc.setting parameters control the pick-up of each stage of the f>/< function. They define the maximum or minimum allowed measured frequency before action from the function. The function constantly calculates the ratio between the pick-up setting and the measured frequency. The reset ratio of 20mHz is built into the function and is always relative to the pick-up value.

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

Table. 4.4.19 - 169. Pick-up settings.

Name	Range	Step	Default	Description
f> used in setting group	• No • Yes	-	No	Enables or disables the protection stage in the setting group.
fset>	10.0080.00Hz	0.01Hz	51Hz	Pick-up setting
fset<	5.0075.00Hz	0.01Hz	49Hz	Pick-up setting
f< undervoltage block	0.00120.00%Un	0.01%Un	0.00%Un	Block setting. If set to zero, blocking is not in use. When the measured voltage drops below the set value, the operation of the functions is blocked.

Operating time characteristics for trip and reset

This function supports definite time delay (DT). For detailed information on these delay types please refer to the chapter "<u>General properties of a protection function</u>" and its section "<u>Operating time</u> <u>characteristics for trip and reset</u>".

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Name	Range	Step	Description			
f LN behaviour	 On Blocked Test Test/Blocked Off 	-	Displays the mode of FRQV block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.			
f condition	NormalStartTripBlocked	-	Displays the status of the protection function.			
f meas / f set	0.00020.000fm/fset	0.001fm/fset	The ratio between the measured frequency and the pick- up value.			
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs.			
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.			

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Events and registers

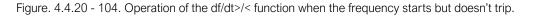
The frequency function (abbreviated "FRQV" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

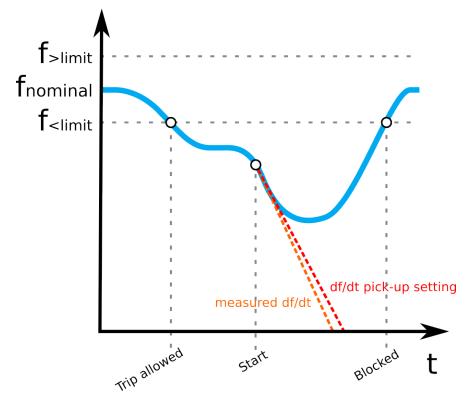
The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

Event block name	Event names
FRQV1	f>/< Start ON
FRQV1	f>/< Start OFF
FRQV1	f>/< Trip ON
FRQV1	f>/< Trip OFF
FRQV1	f>/< Blocked ON
FRQV1	f>/< Blocked OFF

Table. 4.4.19 - 171. Event messages.

The function registers its operation into the last twelve (12) time-stamped registers. The table below presents the structure of the function's register content.

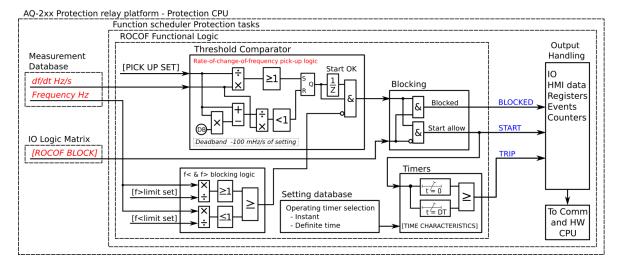

Register	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
f Pre-trig (Hz)	Start/Trip -20ms frequency
f Fault (Hz)	Fault frequency
Setting group in use	Setting group 18 active


Table. 4.4.19 - 172. Register content.

4.4.20 Rate-of-change of frequency (df/dt>/<; 81R)

The rate-of-change of frequency function is used to detect fast drops or increases in frequency. If the load changes fast this function detects and clears the frequency-based faults faster than conventional underfrequency and overfrequency protections. One of the most common causes for the frequency to deviate from its nominal value is an unbalance between the generated power and the load demand. If the unbalance is big the frequency changes rapidly.

The rate-of-change of frequency protection can also be applied to detect a loss of mains situation. Loss of mains is a situation where a part of the network (incorporating generation) loses its connection with the rest of the system (i.e. becomes an islanded network). A generator that is not disconnected from the network can cause safety hazards. A generator can also be automatically reconnected to the network, which can cause damage to the generator and the network.



The figure above presents an example of the df/dt>/< function's operation when the frequency is decreasing. If the f<_{limit} and/or f>_{limit} is activated, the function does not trip no matter how fast the measured frequency changes if it's over the f<_{limit} or under f>_{limit}. As can be seen in the figure above, when the frequency decreases under the f<_{limit},tripping is allowed although the change of frequency is not yet fast enough for the function to trip. Later the frequency makes a fast dip and as a result the change of frequency is faster than the set pick-up value which then causes the function to operate.

Each stage can be activated and deactivated individually. After the f>/< mode has been activated (*Protection* \rightarrow *Stage activation* \rightarrow *Frequency stages*), the user can activate and deactivate the individual stages at will (*Protection* \rightarrow *Frequency* \rightarrow *Frequency protection* $f > /< \rightarrow$ *INFO* \rightarrow *Stage operational setup*).

Figure. 4.4.20 - 105. Simplified function block diagram of the df/dt>/< function.

Measured input

The rate-of-change of frequency protection function compares the measured df/dt>/< ratio to the pickup setting (given in Hz/s). There are three (3) frequency references available. Please refer to "Frequency tracking and scaling" chapter for a detailed description of frequency tracking.

Table. 4.4.20 - 173. Measurement inputs of the df/dt>/< function.

Signals	Description	Time base
Frequency reference 1	Primary frequency reference	5ms
Frequency reference 2	Secondary frequency reference	5ms
Frequency reference 3	Tertiary frequency reference	5ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 4.4.20 - 174. General settings of the function.

Name	Range	Step	Default	Description
df/dt >/< LN mode	 On Blocked Test Test/ Blocked Off 	-	On	Set mode of DFT block. This parameter is visible only when <i>Allow setting of individual</i> <i>LN mode</i> is enabled in <i>General</i> menu.
Max allowed df/ dt rate	0.1050.00 Hz/s	0.10 Hz/s	20 Hz/s	If df/dt rate exceeds this setting, the function is blocked.
df/dt >/< (18) enable	NoYes	-	No	Enables or disables the stage.

Name	Range	Step	Default	Description
df/dt >/< (18) force status to	NormalStartTripBlocked	-	Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.

Pick-up and time delay

The df/dt>/< (1) pick-up, df/dt>/< (2) pick-up, etc. setting parameters control the pick-up of each stage of the df/dt>/< function. They define the maximum or minimum allowed change of frequency before action from the function. The function constantly calculates the ratio between the pick-up setting and the measured df/dt>/<. The reset ratio of +/- 100 mHz/s is built into the function and is always relative to the pick-up value. The f>/< limit value is used to block the function from operating near the nominal frequency.

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

Name	Range	Step	Default	Description
df/dt>/< (18) used in setting group	• No • Yes	-	No	Enables the protection stage in setting group.
df/dt>/< (18) operating mode	RisingFallingBoth	-	Rising	Defines the operation mode of the protection stage. In "Rising" mode df/dt function can trip only from increasing frequency. In "Falling" mode df/dt function can trip only from decreasing frequency. "Both" allows df/dt to trip from both.
df/dt>/< (18) frequency limit	Not usedUse f limit	-	Not used	Displays if frequency limits are used or not.
df/dt>/< (18) pick-up	0.0110.00Hz/s	0.01Hz/s	0.2Hz/s	Pick-up setting.
df/dt>/< (18) f< limit	7.0065.00Hz/s	0.01Hz/s	49.95Hz/s	Underfrequency limit. Tripping is permitted when measured frequency is under this value. This parameter is visible only when operation mode is set to "Falling" or "Both".
df/dt>/< (18) f> limit	10.0070.00Hz/s	0.01Hz/s	51Hz/s	Overfrequency limit. Tripping is permitted if measured frequency is above this value. This parameter is visible only when operation mode is set to "Rising" or "Both".

Table. 4.4.20 - 175. Pick-up settings.

Operating time characteristics for trip and reset

This function supports definite time delay (DT). For detailed information on these delay types please refer to the chapter "<u>General properties of a protection function</u>" and its section "<u>Operating time</u> <u>characteristics for trip and reset</u>".

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Name	Range	Step	Description
df/dt >/< LN behaviour	 On Blocked Test Test/Blocked Off 	-	Displays the mode of DFT block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
Measured df/dt	0.00020.000Hz/s	0.001Hz/s	Rate-of-change-of-frequency at the moment.
df/dt >/< (18) condition	 Normal Start Trip Blocked 	-	Displays the status of the protection function.
df/dt >/< (18) df/dt meas / df/ dt set	0.00020.000p.u.	0.005p.u.	The ratio between the rate-of-change-of-frequency and the pick-up value.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

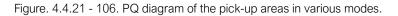
Events and registers

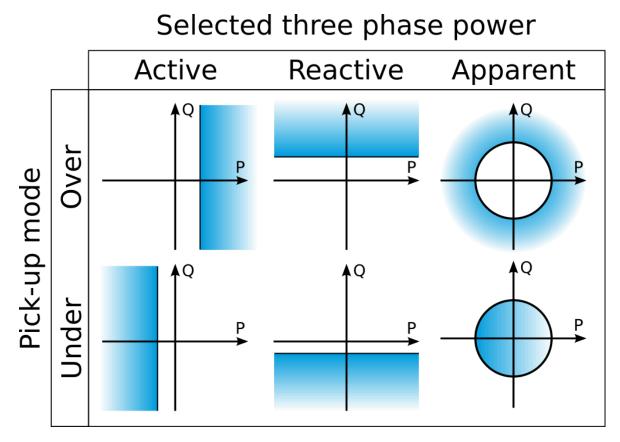
The rate-of-change of frequency function (abbreviated "DFT" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

The function's outputs are can be used for direct I/O controlling and user logic programming. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

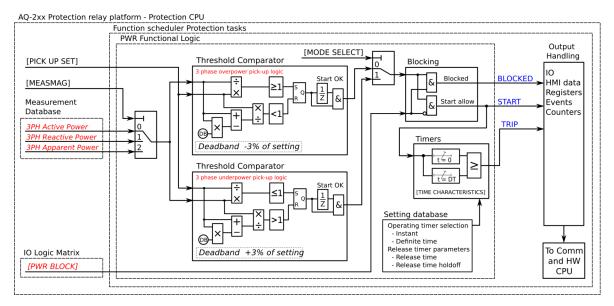
Table. 4.4.20 - 177. Event messages.

Event block name	Event names
DFT1	df/dt>/< (18) Start ON
DFT1	df/dt>/< (18) Start OFF
DFT1	df/dt>/< (18) Trip ON
DFT1	df/dt>/< (18) Trip OFF
DFT1	df/dt>/< (18) Blocked ON
DFT1	df/dt>/< (18) Blocked OFF


The function registers its operation into the last twelve (12) time-stamped registers. The table below presents the structure of the function's register content.


Table. 4.4.20 - 178. Register content.

Register	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
df/dt>/< Pre-trig (Hz/s)	Start/Trip –20ms df/dt>/<
f Pre-trig (Hz)	Start/Trip –20ms frequency
df/dt>/< Fault (Hz/s)	Fault df/dt>/<
f Fault (Hz)	Fault frequency
Setting group in use	Setting group 18 active


4.4.21 Power protection (P, Q, S>/<; 32)

The power protection function is for instant and time-delayed, three-phase overpower or underpower protection (active, reactive, or apparent). The user can select the operating mode with parameter settings.

Measured input

The function block uses three phase currents and line-to-neutral or line-to-line voltages to calculate active, reactive or apparent power (as the uset chooses). Please refer to "Power and energy calculation" chapter for a detailed description of power calculation.

Table. 4.4.21 - 179. Measurement inputs of the P> function.

Signal	Description	Time base
I _{L1} RMS	Fundamental frequency component of phase L1 (A) current measurement	5ms
IL2RMS	Fundamental frequency component of phase L2 (B) current measurement	5ms
IL3RMS	Fundamental frequency component of phase L3 (C) current measurement	5ms
U ₁ RMS	Fundamental frequency component of U1/V voltage measurement	5ms
U ₂ RMS	Fundamental frequency component of U ₂ /V voltage measurement	5ms
U ₃ RMS	Fundamental frequency component of U ₃ /V voltage measurement	5ms
U4RMS	Fundamental frequency component of U4/V voltage measurement	5ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 4.4.21 - 1	180. (General settings of the function.
-------------------	--------	-----------------------------------

Name	Range	Default	Description
PQS>/< LN mode	 On Blocked Test Test/ Blocked Off 	On	Set mode of PWR block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
PQS>/< force status to	NormalStartTripBlocked	Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.

Pick-up settings

The PQS>/< setting parameter controls the pick-up of the power protection function. This defines the maximum or minimum allowed measured three-phase power (active, reactive, or apparent) before action from the function. The function constantly calculates the ratio between the PQS>/< and the measured power magnitude. The reset ratios of 97 % (pick-up mode "Over") and 103 % (pick-up mode "Under") are built into the function and is always relative to the pick-up value.

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

Table. 4.4.21 - 181. Pick-up settings.

Name	Range	Step	Default	Description
Measured magnitude	 P3PH Q3PH S3PH 	-	P3PH	Defines which three phase power is used: Active, reactive or apparent power.
Nominal MVA reference	Set manuallyUse Gen nom MVAUse Trafo nom MVA	-	Set manually	Defines whether the used nominal power is set manually or if transformer or generator status monitoring function defines the nominal power automatically.
Set nominal MVA	0.00011000.0000MVA	0.0001MVA	10MVA	Nominal MVA used by the function. This parameter is visible only when "Nominal MVA reference" parameter is set to "Set manually"
Pick-up mode	> Over< Under	-	Over	Defines whether the function operates in underpower or overpower protection mode.
Pick-up	-500.000500.000%	0.005%	0%	Pick-up setting. Related to the nominal power set by the user.

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Table. 4.4.21 - 182. Information displayed by the function.

Name	Range	Step	Description
PQS>/< LN behaviour	On Blocked Test Test/Blocked Off	-	Displays the mode of PWR block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
PQS>/< condition	Normal Start Trip Blocked	-	Displays the status of the protection function.
Nominal MVA used	0.0001800.000MVA	0.001MVA	Displays the nominal power used by the function. This parameter is displayed if "Nominal MVA reference" parameter has been set to "Use Gen nom MVA" or "Use Trafo nom MVA".
Pick-up setting	-1800.0001800.000MVA	0.001MVA	Pick-up setting used at the moment by the function. Value of this parameter can change if setting group has been changed.
Measurement now	-1800.0001800.000MVA	0.001MVA	Measured active, reactive or apparent power at the moment.
Meas/Set at the moment	-1250.001250.00p.u.	0.01p.u.	Ratio between the measured power and pick-up setting.

Name	Range	Step	Description
Meas/Nom at the moment	-1250.001250.00p.u.	0.01p.u.	Ratio between the measured power and used nominal power value.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for trip and reset

This function supports definite time delay (DT). For detailed information on these delay types please refer to the chapter "<u>General properties of a protection function</u>" and its section "<u>Operating time</u> characteristics for trip and reset".

Events and registers

The power protection function (abbreviated "PWR" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

The function's output can be used for direct I/O controlling and user logic programming. The function also a resettable cumulative counter for the START, TRIP and BLOCKED events.

The function offers four (4) independent stages; the events are segregated for each stage operation.

Event block name	Event names
PWR1PWR4	Start ON
PWR1PWR4	Start OFF
PWR1PWR4	Trip ON
PWR1PWR4	Trip OFF

Table. 4.4.21 - 183. Event messages.

Event block name	Event names
PWR1PWR4	Block ON
PWR1PWR4	Block OFF

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 4.4.21 - 184. Register content.

Register	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
Pre-trigger power	Start/Trip -20ms power
Fault power	Start/Trip power
Pre-fault power	Start -200ms power
Trip time remaining	0 ms1800s
Setting group in use	Setting group 18 active

4.4.22 Line thermal overload protection (TF>; 49F)

The line thermal overload function is used for the thermal capacity monitoring and protection of cables and overhead lines. This function can also be used for any single time constant application like inductor chokes, certain types of transformers and any other static units which do not have active cooling apart from the cables and overhead lines.

The function constantly monitors the instant values of phase TRMS currents (including harmonics up to 31st) and calculates the set thermal replica status in 5 ms cycles. The function includes a total memory function of the load current conditions according to IEC 60255-8.

The function is based on a thermal replica which represents the protected object's or cable's thermal loading in relation to the current going through the object. The thermal replica includes the calculated thermal capacity that the "memory" uses; it is an integral function which tells this function apart from a normal overcurrent function and its operating principle for overload protection applications.

The thermal image for the function is calculated according to the equation described below:

$$\theta_{t\%} = \left(\left(\theta_{t-1} - \left(\frac{I_{max}}{I_n \times k_{SF} \times k_{amb}} \right)^2 \times e^{-\frac{t}{\tau}} \right) + \left(\frac{I_{max}}{I_n \times k_{SF} \times k_{amb}} \right)^2 \right) \times 100\%$$

Where:

- $\theta_{t\%}$ = Thermal image status in percentages of the maximum thermal capacity available
- θ_{t-1} = Thermal image status in a previous calculation cycle (the memory of the function)
- Imax = Measured maximum of the three TRMS phase currents

- I_n = Current for the 100 % thermal capacity to be used (the pick-up current in p.u., t_{max} achieved in τ x 5)
- k_{SF} = Loading factor (service factor), the maximum allowed load current in p.u., dependent on the protected object or the cable/line installation
- k_{amb} = Temperature correction factor, either from a linear approximation or from a settable tenpoint thermal capacity curve
- e = Euler's number
- t = Calculation time step in seconds (0.005 s)
- τ = Thermal time constant of the protected object (in minutes)

The basic operating principle of the thermal replica is based on the nominal temperature rise, which is achieved when the protected object is loaded with a nominal load in a nominal ambient temperature. When the object is loaded with a nominal load for a time equal to its heating constant tau (τ), 63% of the nominal thermal capacity is used. When the loading continues until five times this given constant, the used thermal capacity approaches 100 % indefinitely but never exceeds it. With a single time constant model the cooling of the object follows this same behavior, the reverse of the heating when the current feeding is zero.

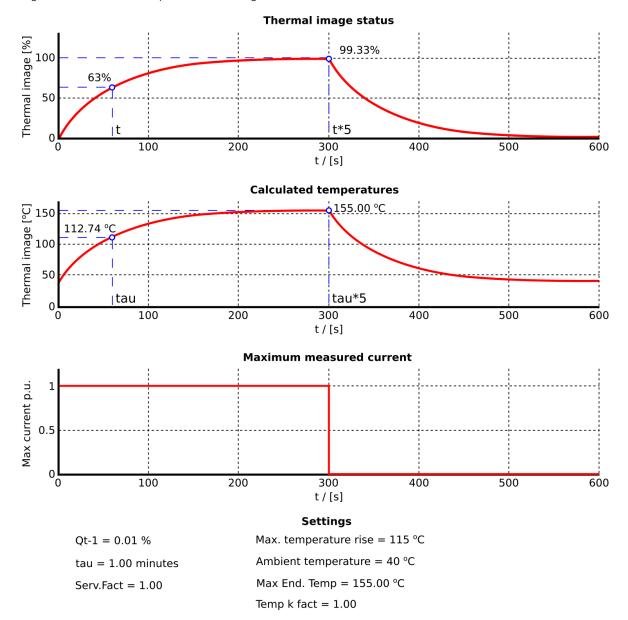


Figure. 4.4.22 - 108. Example of thermal image calculation with nominal conditions.

The described behavior is based on the assumption that the monitored object (whether a cable, a line or an electrical device) has a homogenous body which generates and dissipates heat with a rate proportional to the temperature rise caused by the current squared. This is usually the case with cables and other objects while the heat dissipation of overhead lines is dependent on the weather conditions. Weather conditions considering the prevailing conditions in the thermal replica are compensated with the ambient temperature coefficient which is constantly calculated and changing when using RTD sensor for the measurement. When the ambient temperature of the protected object is stable it can be set manually (e.g. underground cables).

The ambient temperature compensation takes into account the set minimum and maximum temperatures and the load capacity of the protected object as well as the measured or set ambient temperature. The calculated coefficient is a linear correction factor, as the following formula shows:

$$t_{amb} < t_{min} = k_{min}$$

$$t_{amb} < t_{ref} = \left(\frac{1 - k_{min}}{t_{ref} - t_{min}} \times (t_{amb} - t_{min})\right) + k_{min}$$

$$t_{amb} > t_{ref} = \left(\frac{k_{max} - 1}{t_{max} - t_{ref}} \times (t_{amb} - t_{ref})\right) + 1.0$$

$$t_{amb} > t_{max} = k_{max}$$

Where:

- tamb = Measured (or set) ambient temperature (can be set in °C or in °F)
- t_{max} = Maximum temperature (can be set in °C or in °F) for the protected object
- k_{max} = Ambient temperature correction factor for the maximum temperature
- t_{min} = Minimum temperature (can be set in °C or in °F) for the protected object
- kmin = Ambient temperature correction factor for the minimum temperature
- t_{ref} = Ambient temperature reference (can be set in °C or in °F, the temperature in which the manufacturer's temperature presumptions apply, the temperature correction factor is 1.0)

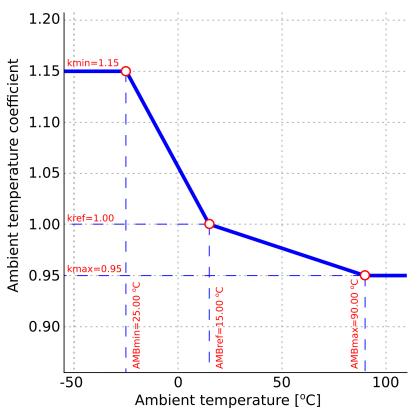


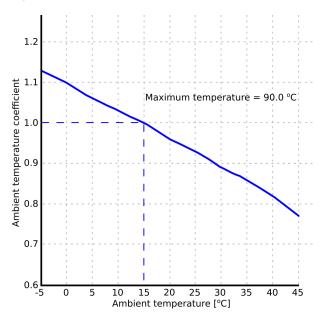
Figure. 4.4.22 - 109. Ambient temperature coefficient calculation (a three-point linear approximation and a settable correction curve).

As can be seen in the diagram above, the ambient temperature coefficient is relative to the nominal temperature reference. By default the temperature reference is +15 °C (underground cables) which gives the correction factor value of 1.00 for the thermal replica.

A settable thermal capacity curve uses the linear interpolation for ambient temperature correction with a maximum of ten (10) pairs of temperature–correction factor pairs.

Figure. 4.4.22 - 110. Example of the relationship between ground temperature and correction factor.

Conductor t	temperatu	ire				Groun	d temperat	ure, C°				
C	•	-5	0	5	10	15	20	25	30	35	40	45
9	90	1.13	1.10	1.06	1.03	1.00	0.96	0.93	0.89	0.86	0.82	0.77


The temperature coefficient may be informed in a similar manner to the figure above in a datasheet provided by the manufacturer.

INFO SETTINGS REGISTERS IO EVENTS Ambient lin or curve Set Curve ambination of the set of	TF> [49F]	
Ambient lin or curve Set Curve Image: state sta		
Amb.Temp.ref1 0 deg *** Amb.Temp.k1 1.1 xIn *** Amb.Temp.ref2 5 deg *** Amb.Temp.k2 1.06 xIn *** Amb.Temp.k2 1.06 xIn *** Add curvepoint 3 Used *** Amb.Temp.k3 1.03 xIn *** Add curvepoint 4 Used *** Add curvepoint 5 1.03 ***	1	
Amb.Temp.k1 1.1 xIn *** Amb.Temp.ref2 5 deg *** Amb.Temp.k2 1.06 xIn *** Add curvepoint 3 Used *** Amb.Temp.k3 1.03 xIn *** Amb.Temp.ref4 15 deg ***		
Amb.Temp.ref2 0.015.00 [0.01] Amb.Temp.k2 1.06 xIn Amb.Temp.k2 0.015.00 [0.01] Add curvepoint 3 Used Amb.Temp.ref3 10 deg -60.0500.0 [1.0] *** Amb.Temp.k3 0.015.00 [0.01] Add curvepoint 4 Used Used ***	Amb. Temp.ref1	0 deg -60.0500.0 [1.0]
Amb.Temp.ref2 5 deg *** Amb.Temp.k2 1.06 xIn *** Add curvepoint 3 Used *** Amb.Temp.ref3 10 deg *** Amb.Temp.k3 1.03 xIn *** Add curvepoint 4 Used ***	Amb.Temp.k1	
-60.0500.0 [1.0] Amb.Temp.k2 1.06 xln Add curvepoint 3 Used Amb.Temp.ref3 10 deg Amb.Temp.k3 1.03 xln Add curvepoint 4 Used Amb.Temp.ref4 15 deg	•	
0.015.00 [0.01] Add curvepoint 3 Used Amb.Temp.ref3 10 deg -60.0500.0 [1.0] Amb.Temp.k3 0.015.00 [0.01] Add curvepoint 4 Used Amb.Temp.ref4	Amb. Lemp.ret2	> deg -60.0500.0 [1.0]
Add curvepoint 3 Used *** Amb.Temp.ref3 10 deg *** Amb.Temp.k3 -60.0500.0 [1.0] *** Add curvepoint 4 Used *** Amb.Temp.ref4 15 deg ***	Amb.Temp.k2	1.06 xIn **
Amb.Temp.ref3 10 deg Amb.Temp.k3 1.03 xIn Add curvepoint 4 Used Amb.Temp.ref4 15 deg	Add curvepoint 3	
-60.0.500.0 [1.0] Amb.Temp.k3 Add curvepoint 4 Amb.Temp.ref4 1.03 xIn *** 0.015.00 [0.01] *** Amb.Temp.ref4 15 deg ***		
Amb. I emp. K3 1.03 xIn 0.015.00 [0.01] ** Add curvepoint 4 Used ** Amb.Temp.ref4 15 deg **		-60.0500.0 [1.0]
Add curvepoint 4 Used ** Amb.Temp.ref4 15 deg **	Amb.Temp.k3	1.03 _{xIn}
Amb.Temp.ref4 15 deg **	Add curvepoint 4	**
-60.0500.0 [1.0]		
Amb Temp k4		-60.0500.0 [1.0]
Amb. Temp. K4 1 xIn 0.015.00 [0.01]	Amb.Temp.k4	¹ xIn
Add curvepoint 5 Not used **	Add curvepoint 5	
	Environmental Settings	

Figure. 4.4.22 - 111. Settings of the function's ambient temperature coefficient curve.

The temperature and correction factor pairs are set to the function's settable curve.

The correction curve for ambient temperature is shown in the figure above. The reference temperature for underground cables is usually +15 °C which gives a correction factor of 1.00 (in this case also the nominal temerature). The curve does not need to use as all the available points. The minimum setting is two pairs, resulting in a straight line.

For cables the ambient temperature correction is just one correction factor. The ksF correction factor is used for non-changing corrections; its calculation is explained later in this manual. Calculating correction factors for a cable or overhead installation requires the consulting of the datasheet for the technical specifications of the used cable. This information is usually provided by the cable manufacturer. For example, cable data may be presented as in the figures below (an example from a Prysmian Group cable datasheet) which show the cable's temperature characteristics and voltage ratings (1st image) with different installations and copper or aluminum conductors (2nd and 3rd image).

Figure. 4.4.22 - 113. Example of a high-voltage cable datasheet.

$\label{eq:standard} \begin{array}{l} \text{Rated voltages} \\ U_o/U &= 38/66 \ kV \\ U_m &= 72.5 \ kV \\ U_p &= 325 \ kV \\ \text{Rated temperatures} \\ \cdot \ Maximum \ permissible \ temp. \ of \\ conductor \ in \ souther circuit \ 250^\circ\text{C} \\ (for \ durations \ up \ to \ 5 \ \text{sec.}) \\ \end{array}$			72 kV Cables 36/66 k Single core, XLPE-insulate high voltage power cable									
Nominal cross	s-sectional area o	f conductor			mm ²	300	500	800	1200	1600		
Continuo Conductor	us current-c Cables laid	Conductor temperature	es Laying formation	Screen circuit								
	In ground	65°C	Flat Trefoil	Open Closed Open Closed	A A A	435 415 415 410	575 525 545 535	750 640 700 680	910 710 830 790	10- 7: 9: 8		
Aluminium	of 15°C	90°C	Flat Trefoil	Open Closed Open	A A A A	515 490 490 485	680 625 645 635	890 770 830 805	1080 860 990 945	12 9 11 10		
	In air of 25°C	90°C	Flat Trefoil	Closed Open Closed Open	A A A	685 660 605	930 865 820	1265 1105 1095	1555 1270 1335	18 13 15		
	In around	65°C	Flat Trefoil	Closed Open Closed Open	A A A A	600 560 520 535	810 730 635 685	1085 940 740 860	1320 1200 820 1095	15 13: 8: 12:		
Copper	of 15°C	90°C	Flat Trefoil	Closed Open Closed Open	A A A A	525 660 620 630	670 865 765 815	820 1115 900 1025	1005 1415 1005 1305	11 16 10 14		
	In air of 25°C	90°C	Flat Trefoil	Closed Open Closed Open Closed	A A A A A	620 880 830 775 770	795 1185 1065 1035 1025	980 1585 1305 1355 1340	1205 2040 1505 1765 1685	13 24 16 20 19		
Maximun	n permissibl	e short-circuit c	urrents for s	hort-circ	uit dura	tion of o	ne secon	d				
Aluminium co Copper cond					kA kA	28.3 42.8	47.2 71.4	75.6 114.2	113.4 171.4	1 5 2 2		

The datasheet shows the currents which in a combination with a specific installation and a specific construction method achieve a specific conductor temperature in give standard conditions (e.g. a copper conductor reaches a temperature of 90 °C when, for example, it has a continuous current-carrying capacity of 815 A, an open screen circuit, and is laid in a trefoil formation in soil whose temperature is 15 °C).

The most important parameters for setting a working thermal image are the cable's current and the installation place. In addition to the above-mentioned current-carrying capacity table, the manufacturer should also provide data to allow for fine-tuning the thermal image. Equally important to the ampere–temperature values are the presumptive conditions under which the given continuous current-carrying capacity values can be expected to apply. The following figure is an example of these general presumption as presented in a Prysmian Group cable datasheet.

Figure. 4.4.22 - 114. General presumptions of high-voltage cables.

Continuous current- carrying capacity	A separate group of three single core cables ca be continuously loaded according to the tables on pages 8 to 14 if the presumptions below are fulfilled. Correction factors for other installation are given in tables 1–7. The current-carrying capacities are calculated in accordance with the IEC Publication 60287 and under the presumptions given below.	e ns in
	Presumptions • One three-phase group of single core cables • Maximum permissible temperature of inner conductor in continuous use: • XLPE insulated cables 90°C • Ambient air temperature 25°C • Ground temperature 15°C • Depth of laying of cables 1.0 m • Distance between single core cables:	
	 - in case of flat formation = one cable diam. - in case of trefoil formation = cables touchin each other Thermal resistivity of soil 1.0 K m/W Cable in air = heat dissipation conditions same as if cables in free air. Open screen circuit in single core cable group = circuit of metal sheaths, concentric conductors or metallic screens connected 	g

to each other and earthed at one point only = screens bonded at a single point. In addition, screen circuit is considered open when cross-bonded at equal interval.

 Closed screen circuit in single core cable group = circuit of metal sheaths, concentric conductors or metallic screens connected to each other at both ends of the group and earthed at least at one end = screens bonded at both ends.

XLPE-insulated cables buried directly in ground XLPE-insulated cables can continuously be loaded to a conductor temperature of 90°C. In underground installations, if a cable in the ground is continuously operated at this highest rated conductor temperature, the thermal resistivity of the soil surrounding the cable may in the course of time increase from its original value as a result of the drying-out processes. As a consequence, the conductor temperature may greatly exceed the highest rated value.

Using single-point bonding or cross-bonding instead of both-end bonding results in considerable increase in current carrying capacity.

If the installation conditions vary from the presumed conditions manufacturers may give additional information on how to correct the the current-carrying capacity to match the changed conditions. Below is an example of the correction factors provided a manufacturer (Prysmian) for correcting the current-carrying capacity.

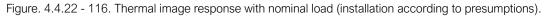
Figure. 4.4.22 - 115. Example of correction factors for the current-carrying capacity as given by a manufacturer.

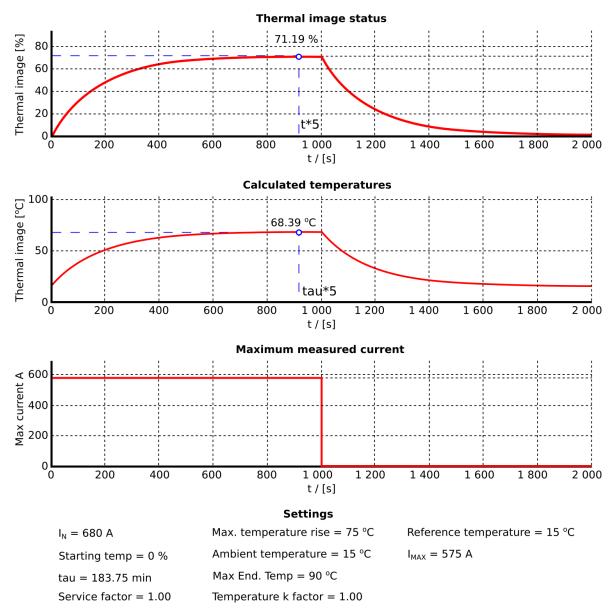
factors for the current-	The following table be applied to the co installation conditio above.	urrent-ca	arrying	, capacit	y wher	n est s car	imated	by multip apacity v	lying t alue by	tions can the continu the corre tables 1-7	uous cu ection f	irrent-	
Table 1.	Spacing between				Numbe	ers of gro	ups of sin	igle core cable	s beside	each other			
Correction factors for	groups of cables, mm		2		3	4		5	6	8		10	
groups of	0 (touching) 70		0.7		0.69	0.6		0.58 0.64	0.55 0.60	0.50		0.46 0.53	
cables buried directly	250			37	0.79	0.7		0.72	0.69	0.66		0.64	
	The values apply to groups without or with spacing bet						tion)						
Table 2.	Thermal resistivity of soil	Km/W	0.	7	1.0	1.3	2	1.5	2.0	2.5		3.0	
Correction	Correction factor			10	1.00	0.9		0.85	0.75	0.65		0.63	
factors for different thermal resistivities of soil	Examples of thermal resis • dry sand (moisture conter • dry gravel and clay		3	9.0 K m/W 1.5 K m/W		 semi-dry gravel and sand (moistu semi-dry and moist gravel moist clay and sand (moisture control 					1.0	Km/W Km/W Km/W	
Table 3.	Depth of laying, m			0.50-0.7	0	0.71-0.9	90	0.91-1.10	1	.11-1.30	1.31-	1.50	
Correction	Rating factor			1.05	5	1.02		1.00		0.97	0.9		
factors for different installation depths in ground				105									
Table 4. Correction	Conductor temperature C° -	5 C	1	5	10	Groun 15	d tempera 20			35	40	45	
factors for	90 1.			1.03	1.00	0.96	0.93	30 0.89	0.86	0.82	0.77		
different ground temperatures	80 1.			1.04	1.00	0.96	0.92	0.88	0.83	0.78	0.73		
	70 1. 65 1.				1.04 1.05	1.00 1.00	0.95 0.95	0.90 0.89	0.85 0.84	0.80 0.77	0.73 0.71	0.67 0.63	
Table 5. Correction factors for different cables in unfilled plastic pipes	Spacing between the tubes, mm 1 0 (touching) 0.80 70 250 For parallel ducts with a group of three with the cables equally loaded the curre on pages 8 to 14 for cables buried diret by correction factors given above.			ying capacit	y indicated after cable be reduced to the ambi		4 60 65 70 er cable p the ambie	5 6 8 0.60 0.55 0.55 0.60 0.60 0.55 0.70 0.65 0.65 on in current carrying capacity can be a bulling are filled with material thermally		5 5 avoided if ly equal			
7.11.6	6 . 1								c 0				
Table 6. Correction	Conductor temperature C°	1	0	15	20	An 25	nbient air 30	temperature, 35	40	45	50	55	
factors for different ambient	90	1.1	12	1.08	1.04	1.00	0.95	0.90	0.85	0.80	0.74	0.68	
air temperatures	80 70	1.1			1.05 1.06	1.00 1.00	0.95 0.93	0.89 0.86	0.84 0.79	0.77 0.71	0.69 0.62	0.6 1 0.5 2	
	65	1.2			1.07	1.00	0.93	0.85	0.77	0.68	0.57	0.45	
Table 7. Correction factors for different groups	Type of laying	Spacing	ables laid in flat formation pacing = One cable diameter (d), stance from the wall not less than 20 mm,				Cables laid in trefoil formation Spacing = Two cable diameters (2d), Distance from the wall not less than 20 mm.						
of three single	Number of groups	1 Correc	2 3	20 mm	الولي في الم	•	1 2 3		20 mm 2d 4				
core cables laid in the air	On floor		Correction factor 0.92 0.89 0.88			0	Correction factor 0.95 0.90 0.88						
This applies only when the cable temperature does not affect the	On metal trays (restricted air circulation)	Number of trays 1 2 3 6		0.89 0.88 0.84 0.83 0.82 0.81 0.80 0.79	0			0.90 0.85 0.83 0.81					
ambient air temperature.	On metal ladders	Number of ladders 1 2 3 6	0.96	0.97 0.96 0.94 0.93 0.93 0.92 0.91 0.90				1.00 0.98 1.00 0.95 1.00 0.94 1.00 0.93	0.96 0.93 0.92 0.90			m	

Arrangements where reduction of current is not necessary	The cooling of cables in flat formation by increased spacing will get better while the losses in metallic screens and sheaths will increase reducing the current-carrying capacity. Each case must be calculated separately.	
Systems placed on top	1 2 3	1 2 3
of each other	Correction factor	Correction factor
On structures or on wall	0.94 0.91 0.89	0.89 0.86 0.84

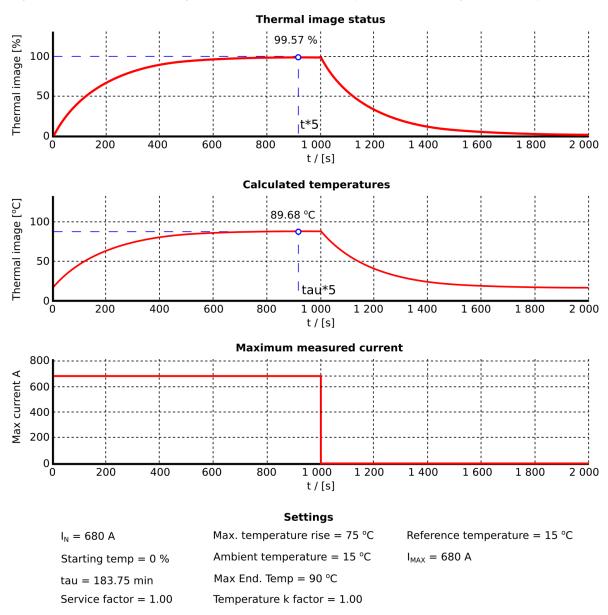
To demonstrate the importance of the ksF (service factor, current-carrying capacity), let us calculate a cable installation with the correct k factor but without setting it to correct value.

First we read the initial data for the setup of the thermal image:


A 66 kV copper cable with a cross-section of 500 mm² is installed into ground. Its 1 s permissible short-circuit current is 71.4 kA and its insulation is XLPE. The cable's screen circuit is open and the laying formation is flat. Its current-carrying capacity is 575 A in 65 °C and 680 A in 90 °C. The reference temperature for ground installation is 15 °C.


Let us calculate an estimation of the time constant τ based on the known one-second short-circuit current related to I_n . If the manufacturer has not provided the time constant, it can be estimated from the maximum permissable short-circuit current (usually a one second value). The function uses this same method to estimate the heating time constant.

$$\tau_{cable} = \frac{1 \text{ s}}{60 \text{ s}} \times \left(\frac{l_{1 \text{ s}}}{l_n}\right)^2 = \frac{1 \text{ s}}{60 \text{ s}} \times \left(\frac{71 \text{ 400 A}}{680 \text{ A}}\right)^2 = 183.75 \text{ min}$$

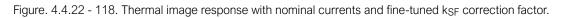

The rest of the settings are in the initial data text above:

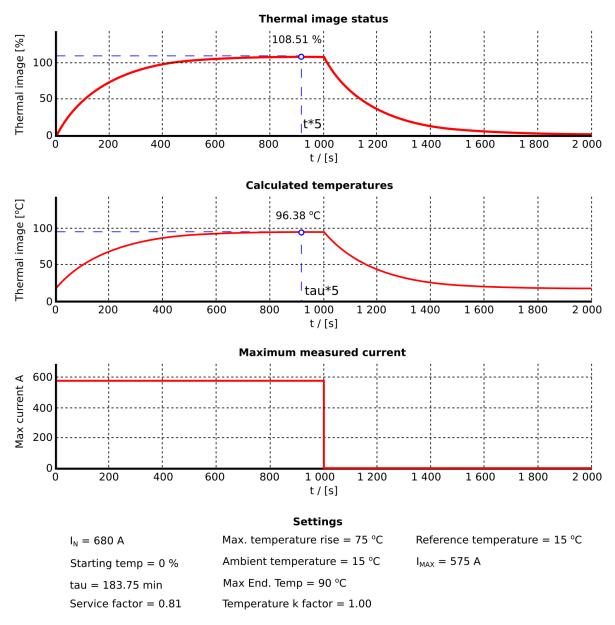
- I_n = 680 A
- T_{max} = 90 °C
- T_{amb} = 15 °C
- T_{ref} = 15 °C
- k_{SF} = 1.0.

As the results show, the end temperature of 68.39 $^{\circ}$ C is reached when the cable is loaded with a stable current for time equalling five times the time constant τ . This uses approximately 71 % of the thermal capacity. According to the datasheet, this current should set the temperature around 65 $^{\circ}$ C; therefore, the model overprotects by three degrees.

The maximum allowed load results in the end temperature of 89.68 °C which means that 99.57 % of the thermal capacity is used. This result matches the expectations of the thermal image perfectly. The user can now securely set the cable's overheating alarm.

When comparing the result to the fully-tuned model in the application, let us include all of the installation correction factors to the image.


A 66 kV copper cable with a cross-section of 500 mm² is installed *with no adjacent cables (k=1)* into a *ground consisting of dry gravel and clay (k=0.85)* and *into the depth of 1.5 meters (k=0.95)*. The cable's 1 s permissible short-circuit current is 71.4 kA and its insulation is XLPE. The cable's screen circuit is open and the laying formation is flat. Its current-carrying capacity is 575 A in 65 °C and 680 A in 90 °C. The reference temperature for ground installation is 15 °C. The cable's thermal time constant is 183.8 min.


From this initial data one can calculate the k_{SF} correction factor according to the following formula (k factor related information in italics):

$k_{SF} = 1 \times 0.85 \times 0.95 = 0.81$

Therefore, the settings are as follows:

- I_n = 680 A
- T_{max} = 90 °C
- T_{amb} = 15 °C
- T_{ref} = 15 °C
- τ = 183.8 min
- k_{SF} = 0.81.

When trying to load the cable with the nominal current one can see the actual current-carrying capacity of the cable is much lower than in the presumptive conditions. A normal loading current can now warm up the cable too much and threaten its withstandability. If the k_{SF} had not been set, the thermal image would show a temperature of appr. 68 °C instead of the real temperature of 96 °C.

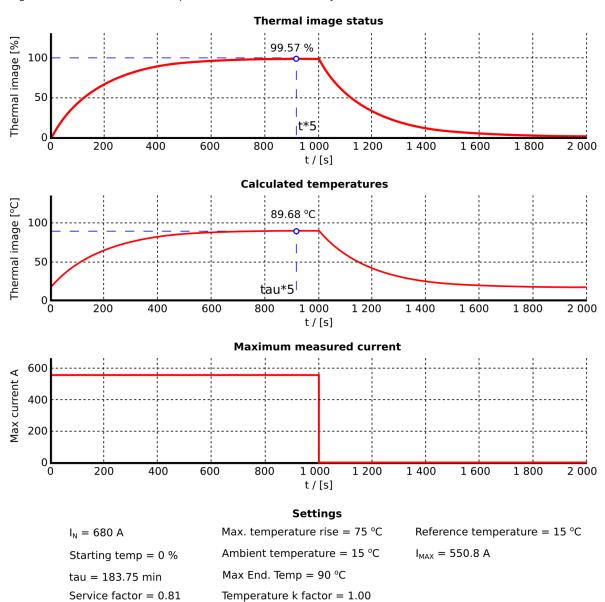


Figure. 4.4.22 - 119. Thermal response with ksF factor correctly set.

When the installation conditions vary from the presumptive conditions, the cable's current-carrying capacity can be reduced so that the temperature of 90 °C is achieved with a 550 A current instead of the 680 A current given in the initial data.

Estimating trip time

Calculated effective nominal current:

 $I_N = k_{SF} \times tamb_{fact} \times I_{Nom}$

Where:

- I_N = calculated effective nominal current
- kSF = the service factor
- kamb = the ambient temperature factor
- INom = the nominal current of the protected device

Calculated end heating:

 $\theta_{End} = (I_{meas}/I_N)^2$

Where:

- Imeas = the measured current
- I_N = the calculated effective nominal current

Calculated time constant:

T=e(-0.005[s]×(Tc[min]×60)[s])

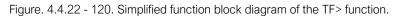
Where:

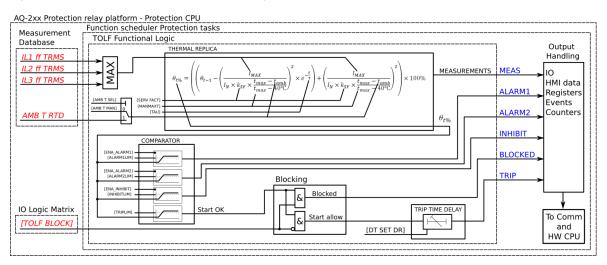
- e = Euler's number
- τ_{c} = the time constant set by the user
- 0.005s is the program cycle time

Calculated active thermal status:

 $\theta_{Calc} = ((\theta_{-1} - \theta_{End}) \times \tau) + \theta_{End}$

Where:


- θ_{-1} = previous cycle calculation result (integrating function needs the memory to operate)
- θ_{End} = the calculated end heating (dependent on the measured current)
- τ = the calculated time constant


The tripping time can be calculated based on these previous calculations according to the following formula (the result in seconds). With this base information the tripping time can be calculated with the formula above (in seconds) when replacing the θ_{Calc} with the value of the thermal level which from the tripping time is wanted to be calculated (in per-unit value).

$$t_{est. trip} = l_{n} \left(\frac{I_{meas}^{2} - \left(k_{fact} \times tamb_{fact} \times \sqrt{\theta_{Calc}} \times I_{n}\right)^{2}}{\left(I_{meas}^{2} - I_{n}^{2}\right)} \right) \times \tau \times 60$$

Function inputs and outputs

The following figure presents a simplified function block diagram of the line thermal overload protection function.

Measured input

The function block uses phase current measurement values. The function block uses TRMS values from the whole harmonic specter of 32 components. RTD input can be used for measuring ambient temperature.

Table. 4.4.22 - 185. Measurement inputs of the TF> function.

Signal	Description Time			
I _{L1} TRMS	TRMS measurement of phase L1 (A) current	5ms		
IL2 TRMS	TRMS measurement of phase L2 (B) current	5ms		
IL3 TRMS	TRMS measurement of phase L3 (C) current	5ms		
RTD	Temperature measurement for the ambient correction	5ms		

Table. 4.4.22 - 186. General settings (not selectable under setting groups)

Name	Range	Default	Description
TF> LN mode	 On Blocked Test Test/ Blocked Off 	On	Set mode of TOLF block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
TF> mode	DisabledActivated	Disabled	The selection of the function is activated or disabled in the configuration. By default it is not in use.

Name	Range	Default	Description
TF> force status to	 Normal Blocked Alarm1 On Alarm2 On Inhibit On Trip On 	Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
Temp C or F deg	• C • F	С	The selection of whether the temperature values of the thermal image and RTD compensation are shown in Celsius or in Fahrenheit.

Table. 4.4.22 - 187. Settings for thermal replica.

Name	Range	Step	Default	Description
IN thermal cap current	0.1040.00xl _n	0.01xl _n	1.00xl _n	The current for the 100 % thermal capacity to be used (the pick-up current in p.u., with t_{max} achieved in time $\tau x 5$).
Set or Estimate tau (t const)	SetEstimate	-	Set	The selection of the time constant setting. If "Set" is selected, the Tau (t const) setting is available and the time constant to be used can be set there. If "Estimate" is selected, the cable's initial data parameters are visible.
Tau (t const)	0.1500.0min	0.1min	10.0min	The time constant setting. This time constant is used for heating and cooling of the protected object. This setting is visible if the "Set" is selected for the "Set or Estimate tau" setting.
Max. perm. OC. current (norm **ik**1s)	11 000 000A	1A	75 000A	The maximum-rated short-circuit current of the protected object (cable). Usually this value is presented as a one second value. This setting is visible if "Estimate" is selected for the "Set or Estimate tau" setting.
Max. OC. time (norm 1 s)	0.15s	0.1s	1.0s	The time of the maximum-rated short-circuit current of the protected object (usually 1 s). This setting is visible if "Estimate" is selected for the "Set or Estimate tau" setting.
Nominal current	11 000 000A	1A	700A	The rated nominal current in the primary value of the protected object under nominal-rated conditions. This setting is visible if "Estimate" is selected for the "Set or Estimate tau" setting.
Estimated tau	01800min	0.005min	191.3min (from defaults)	The estimated result which is used for the thermal replica's time constant. After the previous three required parameters are set the device will calculate this value. This setting is visible if "Estimate" is selected for the "Set or Estimate tau" setting.
ksF (service factor)	0.015.00	0.01	1.00	The service factor which corrects the value of the maximum allowed current according to installation and other conditions varying from the presumptive conditions.

Name	Range	Step	Default	Description
Cold reset default theta	0.0150.0%	0.1%	60.0%	The thermal image status in the restart of the function/ device. The value is given in percentages of the used thermal capacity of the protected object. It is also possible to reset the thermal element. This parameter can be used when testing the function to manually set the current thermal cap to any value.

Table. 4.4.22 - 188. Environmental settings

Name	Range	Step	Default	Description
Object max. temp. (t _{max} = 100%)	0500deg	1deg	90deg	The maximum allowed temperature for the protected object. The default suits for Celsius range and for PEX-insulated cables.
Ambient temp. sel.	Manual setRTD	-	Manual set	The selection of whether fixed or measured ambient temperature is used for the thermal image biasing.
Man. amb. temp. set.	0500deg	1deg	15deg	The manual fixed ambient temperature setting for the thermal image biasing. Underground cables usually use 15 °C. This setting is visible if "Manual set" is selected for the "Ambient temp. sel." setting.
RTD amb. temp. read.	0500deg	1deg	15deg	The RTD ambient temperature reading for the thermal image biasing. This setting is visible if "RTD" is selected for the "Ambient temp. sel." setting.
Ambient lin. or curve	Linear est.Set curve	-	Linear est.	The selection of how to correct the ambient temperature, either by internally calculated compensation based on end temperatures or by a user-settable curve. The default setting is "Linear est." which means the internally calculated correction for ambient temperature.
Temp. reference (t _{ref}) k _{amb} =1.0	-60500deg	1deg	15deg	The temperature reference setting. The manufacturer's temperature presumptions apply and the thermal correction factor is 1.00 (rated temperature). For underground cables the set value for this is usually 15 °C and for cables in the air it is usually 25 °C. This setting is visible if "Ambient lin. or curve" is set to "Linear est."
Max. ambient temp.	0500deg	1deg	45deg	The maximum ambient temperature setting. If the measured temperature is more than the maximum set temperature, the set correction factor for the maximum temperature is used. This setting is visible if "Ambient lin. or curve" is set to "Linear est."
k at max. amb. temp.	0.015.00xl _n	0.01xl _n	1.00xl _n	The temperature correction factor for the maximum ambient temperature setting. This setting is visible if "Ambient lin. or curve" is set to "Linear est."
Min. ambient temp.	-60500deg	1deg	0deg	The minimum ambient temperature setting. If the measured temperature is below the minimum set temperature, the set correction factor for minimum temperature is used. This setting is visible if "Ambient lin. or curve" is set to "Linear est."

Name	Range	Step	Default	Description
k at min. amb. temp.	0.015.00xl _n	0.01xl _n	1.00xl _n	The temperature correction factor for the minimum ambient temperature setting. This setting is visible if "Ambient lin. or curve" is set to "Linear est."
Amb. temp. ref. 110	-50.0500.0deg	0.1deg	15deg	The temperature reference points for the user-settable ambient temperature coefficient curve. This setting is visible if "Ambient lin. or curve" is set to "Set curve".
Amb. temp. k1k10	0.015.00	1.00	0.01	The coefficient value for the temperature reference point. The coefficient and temperature reference points must be set as pairs. This setting is visible if "Ambient lin. or curve" is set to "Set curve".
Add curvepoint 310	Not usedUsed	-	Not used	The selection of whether or not the curve temperature/ coefficient pair is in use. The minimum number to be set for the temperature/coefficient curve is two pairs and the maximum is ten pairs. If the measured temperature is below the set minimum temperature reference or above the maximum set temperature reference, the used temperature coefficient is the first or last value in the set curve. This setting is visible if "Ambient lin. or curve" is set to "Set curve".

Pick-up settings

The operating characteristics of the machine thermal overload protection function are completely controlled by the thermal image. The thermal capacity value calculated from the thermal image can set the I/O controls with ALARM 1, ALARM 2, INHIBIT and TRIP signals.

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

Name	Range	Step	Default	Description
Enable TF> Alarm 1	DisabledEnabled	-	Disabled	Enabling/disabling the ALARM 1 signal and the I/O.
TF> Alarm 1 level	0.0150.0%	0.1%	40%	ALARM 1 activation threshold.
Enable TF> Alarm 2	DisabledEnabled	-	Disabled	Enabling/disabling the ALARM 2 signal and the I/O.
TF> Alarm 2 level	0.0150.0%	0.1%	40%	ALARM 2 activation threshold.
Enable TF> Rest Inhibit	DisabledEnabled	-	Disabled	Enabling/disabling the ALARM 1 signal and the I/O.

Table. 4.4.22 - 189. Pick-up settings.

Name	Range	Step	Default	Description
TF> Inhibit Ievel	0.0150.0%	0.1%	80%	INHIBIT activation threshold.
Enable TF> Trip	DisabledEnabled	-	Disabled	Enabling/disabling the ALARM 1 signal and the I/O.
TF> Trip level	0.0150.0%	0.1%	100%	TRIP activation threshold.
TF> Trip delay	0.0003600.000s	0.005s	0.000s	The trip signal's additional delay. This delay delays the trip signal generation by a set time. The default setting is 0.000 s which does not give an added time delay for the trip signal.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and processes the release time characteristics similarly to when the pick-up signal is reset.

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Measurements and indications

The function outputs measured process data from the following magnitudes:

Name	Range	Description
TF> LN behaviour	 On Blocked Test Test/ Blocked Off 	Displays the mode of TOLF block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
TF> Condition	 Normal Alarm 1 ON Alarm 2 ON Inhibit ON Trip ON Blocked 	The function's operating condition at the moment considering binary IO signal status. No outputs are controlled when the status is "Normal".

Table. 4.4.22 - 190. General status codes.

Name	Range	Description
Thermal status	 Light / No load High overload Overloading Load normal 	The function's thermal image status. When the measured current is below 1 % of the nominal current, the status "Light/No load" is shown. When the measured current is below the trip limit, the status "Load normal" is shown. When the measured current is above the pick-up limit but below $2 \times I_n$, the status "Overloading" is shown. When the measured current is above $2 \times I_n$, the status "High overload" is shown.
TF> Setting alarm	 SF setting ok Service factor set fault. Override to 1.0 	Indicates if SF setting has been set wrong and the actually used setting is 1.0. Visible only when there is a setting fault.
TF> Setting alarm	 Ambient setting ok Ambient t set fault. Override to 1.0 	Indicates if ambient temperature settings have been set wrong and actually used setting is 1.0. Visible only when there is a setting fault.
TF> Setting alarm	 Nominal current calc ok Nominal current set fault. Override to 1.0 	Indicates if nominal current calculation is set wrong and actually used setting is 1.0. Visible only when there is a setting fault.
TF> Setting alarm	 Ambient setting ok Inconsistent setting of ambient k 	Indicates if ambient k setting has been set wrong. Visible only when there is a setting fault.

Table. 4.4.22 - 191. Measurements.

Name	Range	Description/values
Currents	 Primary A Secondary A Per unit 	The active phase current measurement from IL1 (A), IL2 (B) and IL3 (C) phases in given scalings.
Thermal image	Thermal image calc.	 TF> Trip expect mode: No trip expected/Trip expected TF> Time to 100 % theta: Time to reach the 100 % thermal cap TF> Rreference T curr.: reference/pick-up value (IEQ) TF> Active meas. curr.: the measured maximum TRMS current at a given moment TF> T est. with act. curr.: estimation of the used thermal capacity including the current at a given moment TF> T at a given moment: the thermal capacity used at that moment

Name	Range	Description/values
	Temp. estimates	 TF> Used k for amb. temp: the ambient correction factor at a givenmoment TF> Max. temp. rise all.: the maximum allowed temperature rise TF> Temp. rise atm: the calculated temperature rise at a given moment TF> Hot spot estimate: the estimated hot spot temperature including the ambient temperature TF> Hot spot max. all.: the maximum allowed temperature for the object
	Timing status	 TF> Trip delay remaining: the time to reach 100% theta TF> Trip time to rel.: the time to reach theta while staying below the trip limit during cooling TF> Alarm 1 time to rel.: the time to reach theta while staying below the Alarm 1 limit during cooling TF> Alarm 2 time to rel.: the time to reach theta while staying below the Alarm 2 limit during cooling TF> Inhibit time to rel.: the time to reach theta while staying below the Alarm 2 limit during cooling

Table. 4.4.22 - 192. Counters.

Name	Description / values	
Alarm1 inits	The number of times the function has activated the Alarm 1 output	
Alarm2 inits	The number of times the function has activated the Alarm 2 output	
Restart inhibits	The number of times the function has activated the Restart inhibit output	
Trips	The number of times the function has tripped	
Trips Blocked	The number of times the function trips has been blocked	

Events and registers

The line thermal overload protection function (abbreviated "TOLF" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a resettable cumulative counter for the ALARM, INHIBIT, TRIP and BLOCKED events.

Event block name	Event names
TOLF1	Alarm1 ON
TOLF1	Alarm1 OFF
TOLF1	Alarm2 ON
TOLF1	Alarm2 OFF
TOLF1	Inhibit ON
TOLF1	Inhibit OFF

Table. 4.4.22 - 193. Event messages.

Event block name	Event names
TOLF1	Trip ON
TOLF1	Trip OFF
TOLF1	Block ON
TOLF1	Block OFF

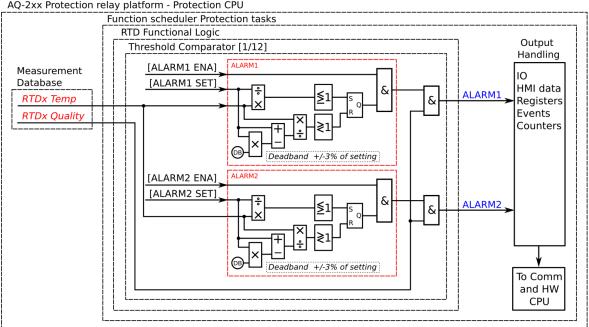

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for TRIP or BLOCKED. The table below presents the structure of the function's register content.

Table. 4.4.22 - 194. Register content.

Name	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
Time to reach 100 % theta	seconds
Ref. T current	x I _n
Active meas. current	x I _n
T at a given moment	%
Max. temp. rise allowed	degrees
Temp. rise at a given moment	degrees
Hot spot estimate	degrees
Hot spot maximum allowed	degrees
Trip delay rem.	seconds
Setting group in use	Setting group 18 active

4.4.23 Resistance temperature detectors (RTD)

Resistance temperature detectors (or RTDs) can be used to measure both temperatures of motors/ generators and ambient temperatures. Typically an RTD is a thermocouple or of type PT100. Up to three (3) separate RTD modules based on an external Modbus are supported; each can hold up to eight (8) measurement elements. Up to two (2) separate RTD option cards are supported by this function. Sixteen (16) individual element monitors can be set for this alarm function, and each of those can be set to alarm two (2) separate alarms from one selected input. The user can set alarms and measurements to be either in degrees Celsius or Fahrenheit.

AQ-2xx Protection relay platform - Protection CPU

Settings

Name	Range	Default	Description
RTD LN mode	 On Blocked Test Test/ Blocked Off 	On	Set mode of RTD block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
RTD LN behaviour	 On Blocked Test Test/ Blocked Off 	-	Displays the mode of RTD block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.

Setting up an RTD measurement, the user first needs to set the measurement module to scan the wanted RTD elements. A multitude of Modbus-based modules are supported. Communication requires bitrate, databits, parity, stopbits and Modbus I/O protocol to be set; this is done at Communication \rightarrow Connections. Once communication is set, the wanted channels are selected at Communication \rightarrow *Protocols* \rightarrow *ModbusIO*. Then the user selects the measurement module from the three (3) available modules (A, B and C), as well as the poll address. Additionally, both the module type and the polled channels need to be set. When using a thermocouple module, the thermo element type also needs to be set for each of the measurement channels. Once these settings are done the RTDs are ready for other functions.

Table. 4.4.23 - 196. Function settings for Channel x (Sx).

Name	Range	Step	Default	Description
S1S16 enable	No Yes	-	No	Enables/disables the selecion of sensor measurements and alarms.
S1S16 module	 InternalRTD1 InternalRTD2 ExtModuleA ExtModuleB ExtModuleC 	-	InternalRTD1	Selects the measurement module. Internal RTD modules are option cards installed to the device. External modules are Modbus based external devices.
S1S16 channel	 Channel 0 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7 	-	Channel 0	Selects the measurement channel in the selected module.
S1S16 Deg C/Dec F	Deg CDeg F	-	Deg C	Selects the measurement temperature scale (Celsius or Fahrenheit).
S1S16 Measurement	-	-	-	Displays the measurement value in the selected temperature scale.
S1S16 Sensor	• Ok • Invalid	-	-	Displays the measured sensor's data validity. If the sensor reading has any problems, the sensor data is set to "Invalid" and the alarms are not activated.
S1S16 Enable alarm 1	DisableEnable	-	Disable	Enables/disables the selection of Alarm 1 for the measurement channel x.
S1S16 Alarm1 >/<	• > • <	-	>	Selects whether the alarm activates when measurement is above or below the pick-up setting value.
S1S16 Alarm1	-101.02000.0deg	0.1deg	0.0deg	Sets the pick-up value for Alarm 1. The alarm is activated if the measurement goes above or below this setting mode (depends on the selected mode in "Sx Alarm1 >/<").
S1S16 sensor	OkInvalid	-	-	Displays the measured sensor's data validity. If the sensor reading has any problems, the sensor data is set to "Invalid" and the alarms are not activated.
S1S16 Enable alarm 2	DisableEnable	-	Disable	Enables/disables the selection of Alarm 2 for the measurement channel x.
S1S16 Alarm2 >/<	• > • <	-	>	Selects whether the measurement is above or below the setting value.

Name	Range	Step	Default	Description
S1S16 Alarm2	-101.02000.0deg	0.1deg	0.0deg	Sets the value for Alarm 2. The alarm is activated if the measurement goes above or below this setting mode (depends on the selected mode in "Sx Alarm2 >/<").

Function can be set to monitor the measurement data from previously set RTD channels. A single channel can be set to have several alarms if the user sets the channel to multiple sensor inputs. In each sensor setting the user can select the monitored module and channel, as well as the monitoring and alarm setting units (°C or °F). The alarms can be enabled, given a setting value (in degrees), and be set to trigger either above or below the setting value. There are sixteen (16) available sensor inputs in the function. An active alarm requires a valid channel measurement. It can be invalid if communication is not working or if a sensor is broken.

When the RTDs have been set, the values can be read to SCADA (or some other control system). The alarms can also be used for direct output control as well as in logics.

Events

The resistance temperature detector function (abbreviated "RTD" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a resettable cumulative counter for the ALARM events.

The function offers sixteen (16) independent stages; the events are segregated for each stage operation.

Event block name	Event names
RTD1	S1S16 Alarm1 ON
RTD1	S1S16 Alarm1 OFF
RTD1	S1S16 Alarm2 ON
RTD1	S1S16 Alarm2 OFF
RTD1	S1S16 Meas Ok
RTD1	S1S16 Meas Invalid

Table. 4.4.23 - 197. Event messages.

4.4.24 Programmable stage (PSx>/<; 99)

The programmable stage is a stage that the user can program to create more advanced applications, either as an individual stage or together with programmable logic. The device has ten programmable stages, and each can be set to follow one to three analog measurements. The programmable stages have three available pick up terms options: overX, underX and rate-of-change of the selected signal. Each stage includes a definite time delay to trip after a pick-up has been triggered.

The programmable stage cycle time is 5 ms. The pick-up delay depends on which analog signal is used as well as its refresh rate (typically under a cycle in a 50 Hz system).

The number of programmable stages to be used is set in the *INFO* tab. When this function has been set as "Activated", the number of programmable stages can be set anywhere between one (1) and ten (10) depending on how many the application needs. In the image below, the number of programmable stages have been set to two which makes PS1 and PS2 to appear. Inactive stages are hidden until they are activated.

Please note that setting the number of available stages does not activate those stages, as they also need to be enabled individually with the PSx > < Enabled parameter. When enabled an active stage shows its current state (condition), the expected operating time and the time remaining to trip under the activation parameters. If a stage is not active the PSx > < condition parameter will merely display "Disabled".

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Name	Range	Description
PSx >/< LN mode	 On Blocked Test Test/ Blocked Off 	Set mode of PSx block. This parameter is visible only when <i>Allow setting of individual</i> <i>LN mode</i> is enabled in <i>General</i> menu.
PSx >/< LN behaviour	 On Blocked Test Test/ Blocked Off 	Displays the mode of PSx block. This parameter is visible only when <i>Allow setting of individual</i> <i>LN mode</i> is enabled in <i>General</i> menu.
PSx >/< Available stages	110	Defines the available amount of stages.
PSx >/< Enabled	DisabledEnabled	Enables the stage.
PSx >/< Force status to	 Normal Start Trip Blocked 	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
PSx >/< Measurement setting	 One magnitude comp Two magnitude comp Three magnitude comp 	Defines how many measurement magnitudes are used by the stage.

Table. 4.4.24 - 198. General settings of the function.

Name	Range	Description
	Mag1 x Mag2	Multiplies Signal 1 by Signal 2. The comparison uses the product of this calculation.
	Mag1 / Mag2	Divides Signal 1 by Signal 2. The comparison uses the product of this calculation.
	Max (Mag1, Mag2)	The bigger value of the chosen signals is used in the comparison.
PSx >/< Magnitude handling ("Two magnitude comp" selected)	Min (Mag1, Mag2)	The smaller value of the chosen signals is used in the comparison.
	Mag1 OR Mag2	Either of the chosen signals has to fulfill the pick-up condition. Both signals have their own pick-up setting.
	Mag1 AND Mag2	Both of the chosen signals have to fulfill the pick-up condition. Both signals have their own pick-up setting.
	Mag1 – Mag2	Subtracts Signal 2 from Signal 1. The comparison uses the product of this calculation.
	Mag1 x Mag2 x Mag3	Multiplies Signals 1, 2 and 3. The comparison uses the product of this calculation.
	Max (Mag1, Mag2, Mag3);	The biggest value of the chosen signals is used in the comparison.
	Min (Mag1, Mag2, Mag3)	The smallest value of the chosen signals is used in the comparison.
PSx >/< Magnitude handling ("Three magnitude comp" selected)	Mag1 OR Mag2 OR Mag3	Any of the signals fulfills the pick-up condition. Each signal has their own pick-up setting.
	Mag1 AND Mag2 AND Mag3	All of the signals need to fulfill the pick-up condition. Each signal has their own pick-up setting.
	(Mag1 OR Mag2) AND Mag3	Signals 1 OR 2 AND 3 need to fulfill the pick-up condition. Each signal has their own pick-up setting.
PSx Magnitude selection	 Currents Voltages Powers Impedances and admittances Others 	Defines the measurement type used by the stage
PSx MagnitudeX	See table below.	Defines the measurement used by the stage. Available parameters depend on selected measurement type.
PSx MagnitudeX multiplier	-5 000 0005 000 000	Multiplies the selected measurement. 1 by default (no multiplication). See section "Magnitude multiplier" for more information.

Analog values

The numerous analog signals have been divided into categories to help the user find the desired value.

Table. 4.4.24 - 199. Phase and residual current measurements (IL1, IL2, IL3, Io1 and Io2)

Name	Description
ILx ff (p.u.)	Fundamental frequency RMS value (in p.u.)
ILx 2 nd h.	ILx 2 nd harmonic value (in p.u.)
ILx 3 rd h.	ILx 3 nd harmonic value (in p.u.)
ILx 4 th h.	ILx 4 nd harmonic value (in p.u.)
ILx 5 th h.	ILx 5 nd harmonic value (in p.u.)
ILx 7 th h.	ILx 7 nd harmonic value (in p.u.)
ILx 9 th h.	ILx 9 nd harmonic value (in p.u.)
ILx 11 th h.	ILx 11 nd harmonic value (in p.u.)
ILx 13 th h.	ILx 13 nd harmonic value (in p.u.)
ILx 15 th h.	ILx 15 nd harmonic value (in p.u.)
ILx 17 th h.	ILx 17 nd harmonic value (in p.u.)
ILx 19 th h.	ILx 19 nd harmonic value (in p.u.)
ILx TRMS	ILx TRMS value (in p.u.)
ILx Ang	ILx Angle (degrees)

Table. 4.4.24 - 200. Other current measurements

Name	Description
I0Z Mag	Zero sequence current value (in p.u.)
IOCALC Mag	Calculated I0 value (in p.u.)
I1 Mag	Positive sequence current value (in p.u.)
I2 Mag	Negative sequence current value (in p.u.)
IOCALC Ang	Angle of calculated residual current (degrees)
I1 Ang	Angle of positive sequence current (degrees)
I2 Ang	Angle of negative sequence current (degrees)
I01ResP	I01 primary current of a current-resistive component
I01CapP	I01 primary current of a current-capacitive component
I01ResS	I01 secondary current of a current-resistive component
I01CapS	I01 secondary current of a current-capacitive component

Name	Description
I02ResP	I02 primary current of a current-resistive component
I02CapP	102 primary current of a current-capacitive component
I02ResS	102 secondary current of a current-resistive component
I02CapS	I02 secondary current of a current-capacitive component

Table. 4.4.24 - 201. Voltage measurements

Name	Description
UL12Mag	UL12 Primary voltage V
UL23Mag	UL23 Primary voltage V
UL31Mag	UL31 Primary voltage V
UL1Mag	UL1 Primary voltage V
UL2Mag	UL2 Primary voltage V
UL3Mag	UL3 Primary voltage V
UL12Ang	UL12 angle (degrees)
UL23Ang	UL23 angle (degrees)
UL31Ang	UL31 angle (degrees)
UL1Ang	UL1 angle (degrees)
UL2Ang	UL2 angle (degrees)
UL3Ang	UL3 angle (degrees)
U0Ang	UL0 angle (degrees)
U0CalcMag	Calculated residual voltage
U1 pos.seq.V Mag	Positive sequence voltage
U2 neg.seq.V Mag	Negative sequence voltage
U0CalcAng	Calculated residual voltage angle (degrees)
U1 pos.seq.V Ang	Positive sequence voltage angle (degrees)
U2 neg.seq.V Ang	Negative sequence voltage angle (degrees)

Table. 4.4.24 - 202. Power measurements

Name	Description
S3PH	Three-phase apparent power S (kVA)
РЗРН	Three-phase active power P (kW)

Name	Description
Q3PH	Three-phase reactive power Q (kvar)
tanfi3PH	Three-phase active power direction
cosfi3PH	Three-phase reactive power direction
SLx	Phase apparent power L1 / L2 / L3 S (kVA)
PLx	Phase active power L1 / L2 / L3 P (kW)
QLx	Phase reactive power L1 / L2 / L3 Q (kVar)
tanfiLx	Phase active power direction L1 / L2 / L3
cosfiLx	Phase reactive power direction L1 / L2 / L3

Table. 4.4.24 - 203. Phase-to-phase and phase-to-neutral impedances, resistances and reactances

Name	Description
RLxPri	Resistance R L12, L23, L31, L1, L2, L3 primary (Ω)
XLxPri	Reactance X L12, L23, L31, L1, L2, L3 primary (Ω)
ZLxPri	Impedance Z L12, L23, L31, L1, L2, L3 primary (Ω)
RLxSec	Resistance R L12, L23, L31, L1, L2, L3 secondary (Ω)
XLxSec	Reactance X L12, L23, L31, L1, L2, L3 secondary (Ω)
ZLxSec	Impedance Z L12, L23, L31, L1, L2, L3 secondary (Ω)
ZLxAngle	Impedance Z L12, L23, L31, L1, L2, L3 angle

Table. 4.4.24 - 204. Other impedances, resistances and reactances

Name	Description
RSeqPri	Positive Resistance R primary (Ω)
XSeqPri	Positive Reactance X primary (Ω)
RSeqSec	Positive Resistance R secondary (Ω)
XSeqSec	Positive Reactance X secondary (Ω)
ZSeqPri	Positive Impedance Z primary (Ω)
ZSeqSec	Positive Impedance Z secondary (Ω)
ZSeqAngle	Positive Impedance Z angle

Table. 4.4.24 - 205. Conductances, susceptances and admittances (L1, L2, L3)

Name	Description
GLxPri	Conductance G L1, L2, L3 primary (mS)
BLxPri	Susceptance B L1, L2, L3 primary (mS)
YLxPriMag	Admittance Y L1, L2, L3 primary (mS)
GLxSec	Conductance G L1, L2, L3 secondary (mS)
BLxSec	Susceptance B L1, L2, L3 secondary (mS)
YLxSecMag	Admittance Y L1, L2, L3 secondary (mS)
YLxAngle	Admittance Y L1, L2, L3 angle (degrees)

Table. 4.4.24 - 206. Other conductances, susceptances and admittances

Name	Description
G0Pri	Conductance G0 primary (mS)
B0Pri	Susceptance B0 primary (mS)
G0Sec	Conductance G0 secondary (mS)
B0Sec	Susceptance B0 secondary (mS)
Y0Pri	Admittance Y0 primary (mS)
Y0Sec	Admittance Y0 secondary (mS)
Y0Angle	Admittance Y0 angle

Table. 4.4.24 - 207. Other measurements

Name	Description
System f.	System frequency
Ref f1	Reference frequency 1
Ref f2	Reference frequency 2
M Thermal T	Motor thermal temperature
F Thermal T	Feeder thermal temperature
T Thermal T	Transformer thermal temperature
RTD meas 116	RTD measurement channels 116
Ext RTD meas 18	External RTD measurement channels 18 (ADAM)
mA input 7,8,15,16	mA input channels 7, 8, 15, 16
ASC 14	Analog scaled curves 14

Magnitude multiplier

Programmable stages can be set to follow one, two or three analog measurements with the *PSx* >/< *Measurement setting* parameter. The user must choose a measurement signal value to be compared to the set value, and possibly also set a scaling for the signal. The image below is an example of scaling: a primary zero sequence voltage has been scaled to a percentage value for easier handling when setting up the comparator.

The scaling factor was calculated by taking the inverse value of a 20 kV system:

$$k = \frac{1}{20\ 000\ \text{V}/\sqrt{3}} = 0.008\ 66$$

When this multiplier is in use, the full earth fault zero sequence voltage is 11 547 V primary which is then multiplied with the above-calculated scaling factor, inversing the final result to 100%. This way a pre-processed signal is easier to set, although it is also possible to just use the scaling factor of 1.0 and set the desired pick-up limit as the primary voltage. Similarly, any chosen measurement value can be scaled to the desired form.

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Name	Range	Description
PSx >/< LN behaviour	 On Blocked Test Test/Blocked Off 	Displays the mode of PSx block. This parameter is visible only when <i>Allow setting of individual</i> <i>LN mode</i> is enabled in <i>General</i> menu.
Condition	 Normal Start Trip Blocked 	Displays status of the function.
Expected operating time	-1800.0001800.000s	Displays the expected operating time when a fault occurs.
Time remaining to trip	0.0001800.000s	When the function has detected a fault and counts down time towards a trip, this displays how much time is left before tripping occurs.
PSx Scaled magnitude X	-5 000 0005 000 000	Displays measurement value after multiplying it the value set to <i>PSx Magnitude multiplier</i> .
PSx >/< MeasMag1/ MagSet1 at the moment	-5 000 0005 000 000	The ratio between measured magnitude and the pick-up setting.
PSx >/< MeasMag2/ MagSet2 at the moment	-5 000 0005 000 000	The ratio between measured magnitude and the pick-up setting.

Table. 4.4.24 - 208. Information displayed by the function.

Name	Range	Description
PSx >/< MeasMag3/ MagSet3 at the moment	-5 000 0005 000 000	The ratio between measured magnitude and the pick-up setting.
PSx >/< CalcMeasMag/ MagSet at the moment	-5 000 0005 000 000	The ratio between calculated magnitude and the pick-up setting.

Pick-up settings

The *Pick-up setting Mag* setting parameter controls the pick-up of the PSx>/< function. This defines the maximum or minimum allowed measured magnitude before action from the function. The function constantly calculates the ratio between the set and the measured magnitudes. The user can set the reset hysteresis in the function (by default 3 %). It is always relative to the *Pick-up setting Mag* value.

Table. 4.4.24 - 209. Pick-up settings.

Name	Range	Step	Default	Description
PS# Pick-up term Mag#	 Over > Over (abs) > Under < Under (abs) < Delta set (%) +/- > Delta abs (%) > Delta +/- measval Delta abs measval 	-	Over	Comparator mode for the magnitude. See "Comparator modes" section below for more information.
PS# Pick-up setting Mag#/calc >/<	-5 000 000.00005 000 000.0000	0.0001	0.01	Pick-up magnitude
PS# Setting hysteresis Mag#	0.000050.0000%	0.0001%	3%	Setting hysteresis
Definite operating time delay	0.0001800.000s	0.005s	0.04s	Delay setting
Release time delays	0.0001800.000s	0.005s	0.06s	Pick-up release delay

Comparator modes

When setting the comparators, the user must first choose a comparator mode.

Table. 4.4.24 - 210. Comparator modes

Mode	Description
Over >	Greater than. If the measured signal is greater than the set pick-up level, the comparison condition is fulfilled.

Mode	Description
Over (abs) >	Greater than (absolute). If the absolute value of the measured signal is greater than the set pick-up level, the comparison condition is fulfilled.
Under <	Less than. If the measured signal is less than the set pick-up level, the comparison condition is fulfilled. The user can also set a blocking limit: the comparison is not active when the measured value is less than the set blocking limit.
Under (abs) <	Less than (absolute). If the absolute value of the measured signal is less than the set pick-up level, the comparison condition is fulfilled. The user can also set a blocking limit: the comparison is not active when the measured value is less than the set blocking limit.
Delta set (%) +/- >	Relative change over time. If the measured signal changes more than the set relative pick-up value in 20 ms, the comparison condition is fulfilled. The condition is dependent on direction.
Delta abs (%) >	Relative change over time (absolute). If the measured signal changes more than the set relative pick-up value in 20 ms in either direction, the comparison condition is fulfilled. The condition is not dependent on direction.
Delta +/- measval	Change over time. If the measured signal changes more than the set pick-up value in 20 ms, the comparison condition is fulfilled. The condition is dependent on direction.
Delta abs measval	Change over time (absolute). If the measured signal changes more than the set pick-up value in 20 ms in either direction, the comparison condition is fulfilled. The condition is not dependent on direction.

The pick-up level is set individually for each comparison. When setting up the pick-up level, the user needs to take into account the modes in use as well as the desired action. The pick-up limit can be set either as positive or as negative. Each pick-up level has a separate hysteresis setting which is 3 % by default.

The user can set the operating and releasing time delays for each stage.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

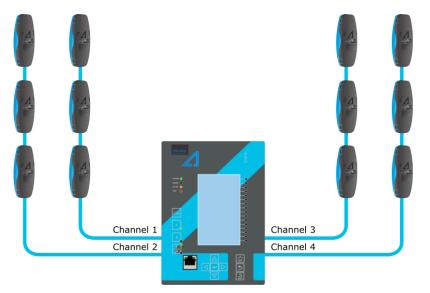
The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Events and registers

The programmable stage function (abbreviated "PSx" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a resettable cumulative counter for the START, TRIP and BLOCKED events.

Event block name	Event names
PSx	PS110 >/< Start ON
PSx	PS110 >/< Start OFF
PSx	PS110 >/< Trip ON
PSx	PS110 >/< Trip OFF
PSx	PS110 >/< Block ON
PSx	PS110 >/< Block OFF


The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, TRIP or BLOCKED. The table below presents the structure of the function's register content.

Register	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
>/< Mag#	The numerical value of the magnitude
Mag#/Set#	Ratio between the measured magnitude and the pick-up setting
Trip time remaining	0 ms1800s
Setting group in use	Setting group 18 active

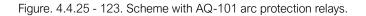
Table. 4.4.24 - 212. Register content.

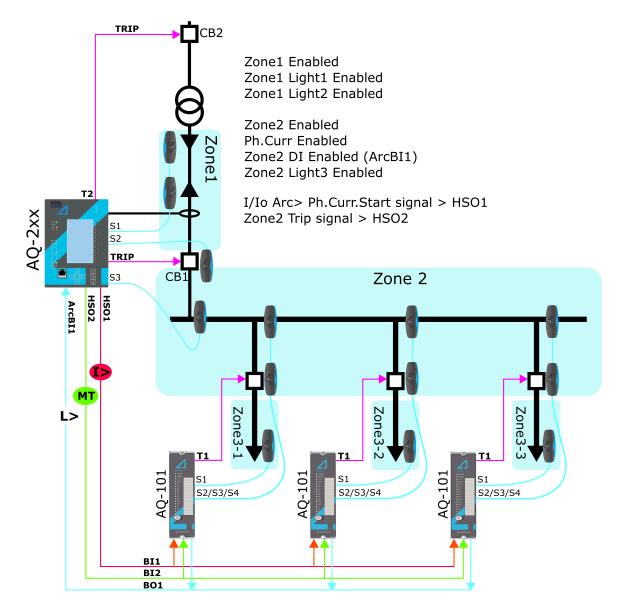
4.4.25 Arc fault protection (IArc>/I0Arc>; 50Arc/50NArc)

Arc faults occur for a multitude of reasons: e.g. insulation failure, incorrect operation of the protected device, corrosion, overvoltage, dirt, moisture, incorrect wiring, or even because of aging caused by electric load. It is important to detect the arc as fast as possible in order to minimize its effects. Using arc sensors to detect arc faults is much faster than merely measuring currents and voltages. In busbar protection devices with normal protection can be too slow to disconnect arcs within a safe time frame. For example, it may be necessary to delay operation time for hundreds of milliseconds when setting up an overcurrent protection relay to control the feeder breakers to achieve selectivity. This delay can be avoided by using arc protection. The arc protection card has a high-speed output to trip signals faster as well as to extend the speed of arc protection.

Figure. 4.4.25 - 122. Protection device equipped with arc protection.

The arc protection card has four (4) sensor channels, and up to three (3) arc point sensors can be connected to each channel. The sensor channels support Arcteq AQ-01 (light sensing) and AQ-02 (pressure and light sensing) units. Optionally, the protection function can also be applied with a phase current or a residual current condition: the function trips only if the light and overcurrent conditions are met.

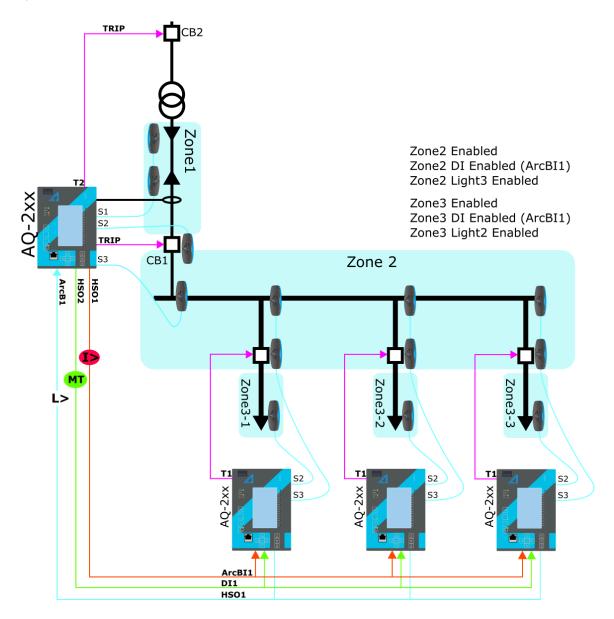

Outputs	Activation condition
Channel 1 Light In Channel 2 Light In Channel 3 Light In Channel 4 Light In	The arc protection card's sensor channel detects light.
ARC Binary input signal	The arc protection card's binary input is energized.
I/I0 Arc> Ph. curr. START I/I0 Arc> Res. curr. START	The measured phase current or the residual current is over the set limit.
I/I0 Arc> Ph. curr. BLOCKED I/I0 Arc> Res. curr. BLOCKED	The phase current or the residual current measurement is blocked by an input.
I/I0 Arc> Zone 1 TRIP I/I0 Arc> Zone 2 TRIP I/I0 Arc> Zone 3 TRIP I/I0 Arc> Zone 4 TRIP	All required conditions for tripping the zone are met (light OR light and current).
I/I0 Arc> Zone 1 BLOCKED I/I0 Arc> Zone 2 BLOCKED I/I0 Arc> Zone 3 BLOCKED I/I0 Arc> Zone 4 BLOCKED	All required conditions for tripping the zone are met (light OR light and current) but the tripping is blocked by an input.


Outputs	Activation condition
I/I0 Arc> S1 Sensor fault I/I0 Arc> S2 Sensor fault I/I0 Arc> S3 Sensor fault I/I0 Arc> S4 Sensor fault	The detected number of sensors in the channel does not match the settings.
I/I0 Arc> IO unit fault	The number of connected AQ-100 series units does not match the number of units set in the settings.

Example of scheme setting

The following examples helps the user better understand how the arc protection function is set. In the examples AQ-101 models are used to extend the protection of Zone 2 and to protect each outgoing feeder (Zone 3).


This scheme is a single-line diagram with AQ-200 series devices and with AQ-101 arc protection relays. The settings are for an incoming feeder AQ-200 device.



To set the zones for the AQ-200 models sensor channels start by enabling the protected zones (in this case, Zones 1 and 2). Then define which sensor channels are sensing which zones (in this case, sensor channels S1 and S2 are protecting Zone 1). Enable Light 1 of Zone 1 as well as Light 2 of Zone 2. The sensor channel S3 deals with Zone 2. Enable Light 3 of Zone 2. The high-speed output contacts HSO1 and HSO2 have been set to send overcurrent and master trip signals to the AQ-101 arc protection relays. The AQ-100 series units send out test pulses in specific intervals to check the health of the wiring between the AQ-100 series units. The parameter *I/I0 Arc> Self supervision test pulse* should be activated when connecting the AQ-100 series units to the AQ-200 series arc protection card to prevent the pulses from activating ArcBI1.

The next example is almost like the previous one: it is also a single-line diagram with AQ 200 series devices. However, this time each outgoing feeder has an AQ-200 protection device instead of an AQ-101 arc protection relay.

The settings for the device supervising the incoming feeder are the same as in the first example. The devices supervising the busbar and the outgoing feeder, however, have a different setting. Both Zones 2 and 3 need to be enabled as there are sensors connected to both Zone 2 and 3 starts. Sensors connected to the channel S3 are in Zone 2. Then enable Light 3 of Zone 2. The sensor connected to the channel S2 is in Zone 3. Then enable Light 2 of Zone 3.

If any of the channels have a pressure sensing sensor, enable it the same way as the regular light sensors. If either phase overcurrent or residual overcurrent is needed for the tripping decision, they can be enabled in the same way as light sensors in the zone. When a current channel is enabled, the measured current needs to be above the set current limit in addition to light sensing.

Measured input

Arc protection uses samples based on current measurements. If the required number of samples is found to be above the setting limit, the current condition activates. The arc protection can use either phase currents, residual currents or both.

Table. 4.4.25 - 214. Measurement inputs of the U1/U2>/< function.

Signal	Description	Time base
IL1 samples	Samples received by IL1 current measurement channel	5ms
IL2 samples	Samples received by IL2 current measurement channel	5ms
IL3 samples	Samples received by I_{L3} current measurement channel	5ms
I ₀₁ samples	Samples received by I ₀₁ current measurement channel	5ms
I ₀₂ samples	Samples received by I_{02} current measurement channel	5ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 4.4.25 - 215	. General settings of the function.
---------------------	-------------------------------------

Name	Range	Default	Description
I/I0 Arc> LN mode	 On Blocked Test Test/Blocked Off 	On	Set mode of ARC block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
I/I0 Arc> force status to	 Normal PH curr blocked PH curr Start ResCurr Blocked ResCurr Start Zone 1 Trip Zone 1 Trip Zone2 Trip Zone2 Trip Zone3 Trip Zone3 Trip Zone4 Trip Zone4 Blocked 	Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
Channel 1 sensors	 No sensors 1 sensor 2 sensors 3 sensors 	No sensors	Defines the number of sensors connected to the channel (channels 1/2/ 3/4).
Channel 2 sensors			

Name	Range	Default	Description
Channel 3 sensors			
Channel 4 sensors			
Channel 1 sensor status			
Channel 2 sensor status	Sensors OKConfiguration fault state	-	Displays the status of the sensor channel. If the number of sensors connected to the channel does not match with the set "Channel 1/2/3/4 sensors" setting, this parameter will go to the "Configuration fault" state.
Channel 3 sensor status			
Channel 4 sensor status			

Pick-up settings

The pick-up of each zone of the larc>/l0arc> function is controlled by one of the following: the phase current pick-up setting, the residual current pick-up setting, or the sensor channels. The pick-up setting depends on which of these are activated in the zone.

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

Name	Range	Step	Default	Description
Phase current pick-up	0.0540.00 x I _n	0.01 x I _n	1.2 x I _n	The phase current measurement's pick-up value (in p.u.).
I0 input selection	NoneI01I02	-	None	Selects the residual current channel (I01 or I02).
Res.current pick-up	0.0540.00 x l _{0n}	0.01 x l _{0n}	1.2 x l _{0n}	The residual current measurement's pick-up value (in p.u.).
Zone1/2/ 3/4 Enabled	DisabledEnabled	-	Disabled	Enables the chosen zone. Up to 4 zones can be enabled.

Table. 4.4.25 - 216. Enabled Zone pick-up settings.

Name	Range	Step	Default	Description
Zone1/2/ 3/4 Ph. curr. Enabled	DisabledEnabled	-	Disabled	The phase overcurrent allows the zone to trip when light is detected.
Zone1/2/ 3/4 Res. curr. Enabled	DisabledEnabled	-	Disabled	The residual overcurrent allows the zone to trip when light is detected.
Zone1/2/ 3/4 Light 1 Enabled	DisabledEnabled	-	Disabled	Light detected in sensor channel 1 trips the zone.
Zone1/2/ 3/4 Light 2 Enabled	DisabledEnabled	-	Disabled	Light detected in sensor channel 2 trips the zone.
Zone1/2/ 3/4 Light 3 Enabled	DisabledEnabled	-	Disabled	Light detected in sensor channel 3 trips the zone.
Zone1/2/ 3/4 Light 4 Enabled	DisabledEnabled	-	Disabled	Light detected in sensor channel 4 trips the zone.
Zone1/2/ 3/4 Pres. 1 Enabled	DisabledEnabled	-	Disabled	Pressure detected in sensor channel 1 trips the zone.
Zone1/2/ 3/4 Pres. 2 Enabled	DisabledEnabled	-	Disabled	Pressure detected in sensor channel 2 trips the zone.
Zone1/2/ 3/4 Pres. 3 Enabled	DisabledEnabled	-	Disabled	Pressure detected in sensor channel 3 trips the zone.
Zone1/2/ 3/4 Pres. 4 Enabled	DisabledEnabled	-	Disabled	Pressure detected in sensor channel 4 trips the zone.
Zone1/2/ 3/4 DI Enabled	 Disabled Light In Current In 	-	Disabled	Arc protection option card digital input function selection. "Light In" mode trips the zone when digital input is active. In "Current In" mode digital input must be active at the same time as any of the sensor channels for the zone to trip.

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Table. 4.4.25 - 217. Information displayed by the function.

Name Range	Description
------------	-------------

I/I0 Arc> LN behaviour	 On Blocked Test Test/Blocked Off 	Displays the mode of ARC block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
I/I0 Arc> condition	 Z1 Trip Z1 Blocked Z2 Trip Z2 Blocked Z3 Trip Z3 Blocked Z4 Trip Z4 Blocked 	Displays status of the protection function.
Sensor status	 Ph Curr Blocked Ph Curr Start Res Curr Blocked Res Curr Start Channel1 Light Channel2 Pressure Channel2 Light Channel3 Pressure Channel3 Light Channel4 Pressure Channel4 Pressure Digital input I/I0 Arc> Sensor 1 Fault I/I0 Arc> Sensor 3 Fault I/I0 Arc> Sensor 4 Fault I/I0 Arc> I/I0 Arc> Sensor 4 Fault 	Displays the general status of sensors.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a TRIP signal is generated.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further.

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Events and registers

The arc fault protection function (abbreviated "ARC" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a resettable cumulative counter for the events.

Event block name	Event names
ARC1	Zone 14 Trip ON
ARC1	Zone 14 Trip OFF
ARC1	Zone 14 Block ON
ARC1	Zone 14 Block OFF
ARC1	Phase current Blocked ON
ARC1	Phase current Blocked OFF
ARC1	Phase current Start ON
ARC1	Phase current Start OFF
ARC1	Residual current Blocked ON
ARC1	Residual current Blocked OFF
ARC1	Residual current Start ON
ARC1	Residual current Start OFF
ARC1	Channel 14 Light ON
ARC1	Channel 14 Light OFF
ARC1	Channel 14 Pressure ON
ARC1	Channel 14 Pressure OFF
ARC1	DI Signal ON
ARC1	DI Signal OFF
ARC1	I/I0 Arc> Sensor 14 Fault ON
ARC1	I/I0 Arc> Sensor 14 Fault OFF
ARC1	I/I0 Arc> I/O-unit Fault ON
ARC1	I/I0 Arc> I/O-unit Fault OFF

Table. 4.4.25 - 218. Event messages.

The function registers its operation into the last twelve (12) time-stamped registers. The table below presents the structure of the function's register content.

Table. 4.4.25 - 219. Register content.

Register	Description	
Date and time	dd.mm.yyyy hh:mm:ss.mss	
Event	Event name	
Phase A current		
Phase B current		
Phase C current	Trip current	
Residual current		
Active sensors	14	
Setting group in use	Setting group 18 active	

4.5 Control functions

4.5.1 Common signals

Common signals function has all protection function start and trip signals internally connected to Common START and TRIP output signals. When any of the activated protection functions generate a START or a TRIP signal, Common signals function will also generate the same signal.

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Name	Range Default		Description		
Common force status to	NormalStartTrip	Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.		

Table. 4.5.1 - 220. General settings of the function.

Common signals function has all START and TRIP signals of protection functions internally connected to Common START and TRIP output signals. But it is also possible to assign extra signals to activate Common START and TRIP.

Table. 4.5.1 - 221.	Common signals extra inputs.
---------------------	------------------------------

Name	Description
Common Start In	Assign extra signals to activate common START signal. Please note that all protection function START signals are already assigned internally to Common START.
Common Trip In	Assign extra signals to activate common TRIP signal. Please note that all protection function TRIP signals are already assigned internally to Common TRIP.

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Table. 4.5.1 - 222. Information displayed by the function.

Name	Range	Description
Common signals condition	NormalStartTrip	Displays status of the function.

Function blocking

Common signals function itself doesn't have blocking input signals. Blocking of tripping should be done in each protection function settings.

Events

The common signals function (abbreviated "GNSIG" in event block names) generates events from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a resettable cumulative counter for the START and TRIP events.

The events triggered by the function are recorded with a time stamp.

Table. 4.5.1 - 223. Event messages.

Event block name	Event names
GNSIG	Common Start ON
GNSIG	Common Start OFF
GNSIG	Common Trip ON
GNSIG	Common Trip OFF

4.5.2 Setting group selection

All device types support up to eight (8) separate setting groups. The Setting group selection function block controls the availability and selection of the setting groups. By default, only Setting group 1 (SG1) is active and therefore the selection logic is idle. When more than one setting group is enabled, the setting group selector logic takes control of the setting group activations based on the logic and conditions the user has programmed.

Figure. 4.5.2 - 125. Simplified function block diagram of the setting group selection function.

Setting Database	Function scheduler Protection tasks SGS Functional Logic	
SGS SGUSED	1-8	Output Handling
SGS FORCESG SGS ENAFORCESG		IO HMI data
Input Signals		Registers
SGS SG1		Events Counters
SGS SG2		
SGS SG3	┆┆─── <mark>┟╲</mark> ╔┝┼┶╘╴┰╧╢╟── ╚┟╫╫╘ ╗┷╩╫ _┇ ┥╘┚┥╝╎	
SGS SG4		∕ESG →
SGS SG5 SGS SG6		
SGS SG7		
SGS SG8		To Comm
		and HW CPU

AQ-2xx Protection relay platform - Protection CPU

Setting group selection can be applied to each of the setting groups individually by activating one of the various internal logic inputs and connected digital inputs. The user can also force any of the setting groups on when the "Force SG change" setting is enabled by giving the wanted quantity of setting groups as a number in the communication bus or in the local HMI, or by selecting the wanted setting group from *Control* \rightarrow *Setting groups*. When the forcing parameter is enabled, the automatic control of the local device is overridden and the full control of the setting groups is given to the user until the "Force SG change" is disabled again.

Setting groups can be controlled either by pulses or by signal levels. The setting group controller block gives setting groups priority values for situations when more than one setting group is controlled at the same time: the request from a higher-priority setting group is taken into use.

Setting groups follow a hierarchy in which setting group 1 has the highest priority, setting group 2 has second highest priority etc. If a static activation signal is given for two setting groups, the setting group with higher priority will be active. If setting groups are controlled by pulses, the setting group activated by pulse will stay active until another setting groups receives and activation signal.

Figure. 4.5.2 - 126. Example sequences of group changing (control with pulse only, or with both pulses and static signals).

Setting group 1 Control signal Setting group 2 Control signal Setting group 3 Control signal Setting group 4 Control signal				
Setting group 1 Active Setting group 2 Active Setting group 3 Active Setting group 4 Active				

Settings and signals

The settings of the setting group control function include the active setting group selection, the forced setting group selection, the enabling (or disabling) of the forced change, the selection of the number of active setting groups in the application, as well as the selection of the setting group changed remotely. If the setting group is forced to change, the corresponding setting group must be enabled and the force change must be enabled. Then, the setting group can be set from communications or from HMI to any available group. If the setting group control is applied with static signals right after the "Force SG" parameter is released, the application takes control of the setting group selection.

Table. 4.5.2 - 224.	Settings of the	e setting group	selection function.

Name	Range	Default	Description	
Active setting group	 SG1 SG2 SG3 SG4 SG5 SG6 SG7 SG8 	SG1	Displays which setting group is active.	
Force setting group	 None SG1 SG2 SG3 SG4 SG5 SG6 SG7 SG8 	None	The selection of the overriding setting group. After "Force SG changes is enabled, any of the configured setting groups in the device can be overriden. This control is always based on the pulse operating mod It also requires that the selected setting group is specifically controlled to ON after "Force SG" is disabled. If there are no other controls, the last set setting group remains active.	
Force setting group change	DisabledEnabled	Disabled	The selection of whether the setting group forcing is enabled or disabled. This setting has to be active before the setting group can be changed remotely or from a local HMI. This parameter overrides the local control of the setting groups and it remains on until the user disables it.	
Used setting groups	 SG1 SG12 SG13 SG14 SG15 SG16 SG17 SG18 	SG1	The selection of the activated setting groups in the application. Newly-enabled setting groups use default parameter values.	
Remote setting group change	 None SG1 SG2 SG3 SG4 SG5 SG6 SG7 SG8 	None	This parameter can be controlled through SCADA to change the setting group remotely. Please note that if a higher priority setting group is being controlled by a signal, a lower priority setting group cannot be activated with this parameter.	

Table $152 - 225$	Signals of the setting group selection function.
10016. 4.0.2 - 220	Signals of the setting group selection function.

Name	Description
Setting group 1	The selection of Setting group 1 ("SG1"). Has the highest priority input in setting group control. Can be controlled with pulses or static signals. If static signal control is applied, no other SG requests will be processed.
Setting group 2	The selection of Setting group 2 ("SG2"). Has the second highest priority input in setting group control. Can be controlled with pulses or static signals. If static signal control is applied, no requests with a lower priority than SG1 will be processed.
Setting group 3	The selection of Setting group 3 ("SG3"). Has the third highest priority input in setting group control. Can be controlled with pulses or static signals. If static signal control is applied, no requests with a lower priority than SG1 and SG2 will be processed.
Setting group 4	The selection of Setting group 4 ("SG4"). Has the fourth highest priority input in setting group control. Can be controlled with pulses or static signals. If static signal control is applied, no requests with a lower priority than SG1, SG2 and SG3 will be processed.
Setting group 5	The selection of Setting group 5 ("SG5"). Has the fourth lowest priority input in setting group control. Can be controlled with pulses or static signals. If static signal control is applied, SG6, SG7 and SG8 requests will not be processed.
Setting group 6	The selection of Setting group 6 ("SG6"). Has the third lowest priority input in setting group control. Can be controlled with pulses or static signals. If static signal control is applied, SG7 and SG8 requests will not be processed.
Setting group 7	The selection of Setting group 7 ("SG7"). Has the second lowest priority input in setting group control. Can be controlled with pulses or static signals. If static signal control is applied, only SG8 requests will not be processed.
Setting group 8	The selection of Setting group 8 ("SG8"). Has the lowest priority input in setting group control. Can be controlled with pulses or static signals. If static signal control is applied, all other SG requests will be processed regardless of the signal status of this setting group.

Example applications for setting group control

This chapter presents some of the most common applications for setting group changing requirements.

A Petersen coil compensated network usually uses directional sensitive earth fault protection. The user needs to control its characteristics between varmetric and wattmetric; the selection is based on whether the Petersen coil is connected when the network is compensated, or whether it is open when the network is unearthed.

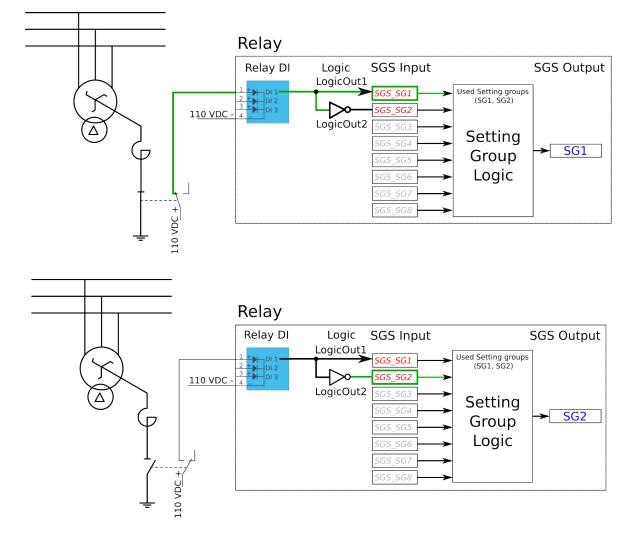
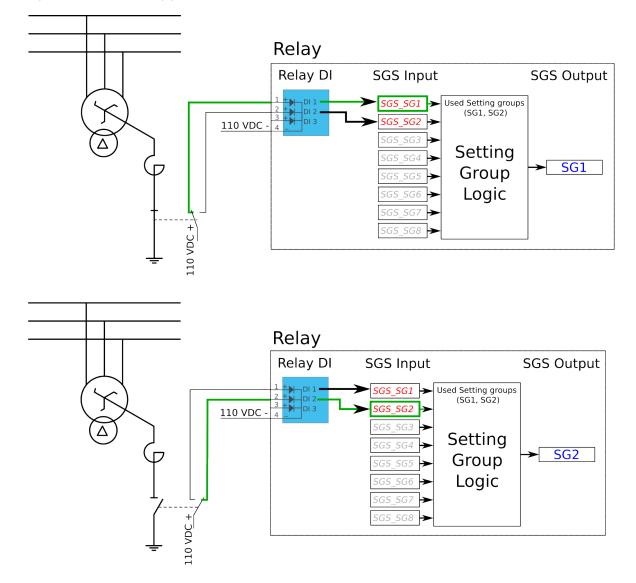



Figure. 4.5.2 - 127. Setting group control – one-wire connection from Petersen coil status.

Depending on the application's requirements, the setting group control can be applied either with a one-wire connection or with a two-wire connection by monitoring the state of the Petersen coil connection.

When the connection is done with one wire, the setting group change logic can be applied as shown in the figure above. The status of the Petersen coil controls whether Setting group 1 is active. If the coil is disconnected, Setting group 2 is active. This way, if the wire is broken for some reason, the setting group is always controlled to SG2.

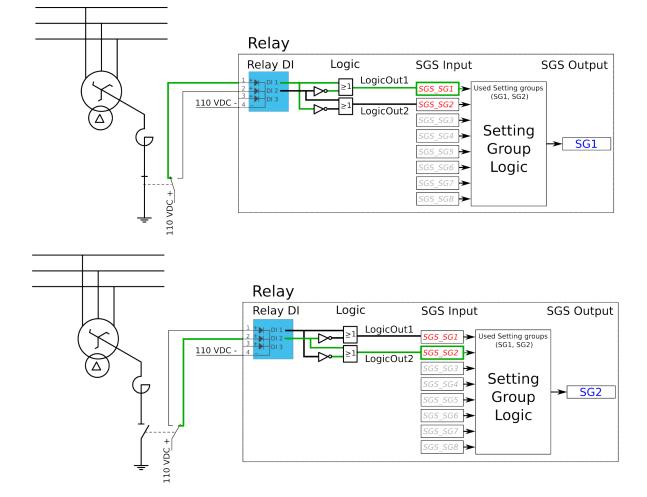


Figure. 4.5.2 - 129. Setting group control – two-wire connection from Petersen coil status with additional logic.

The images above depict a two-wire connection from the Petersen coil: the two images at the top show a direct connection, while the two images on the bottom include additional logic. With a two-wire connection the state of the Petersen coil can be monitored more securely. The additional logic ensures that a single wire loss will not affect the correct setting group selection.

The application-controlled setting group change can also be applied entirely from the device's internal logics. For example, the setting group change can be based on the cold load pick-up function (see the image below).

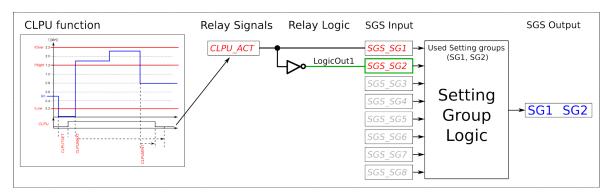
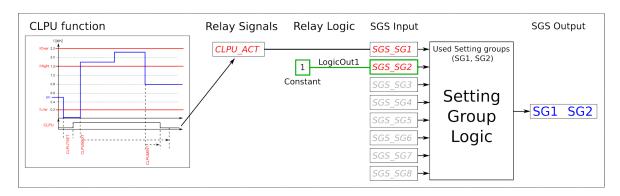



Figure. 4.5.2 - 130. Entirely application-controlled setting group change with the cold load pick-up function.

In these examples the cold load pick-up function's output is used for the automatic setting group change. Similarly to this application, any combination of the signals available in the device's database can be programmed to be used in the setting group selection logic.

As all these examples show, setting group selection with application control has to be built fully before they can be used for setting group control. The setting group does not change back to SG1 unless it is controlled back to SG1 by this application; this explains the inverted signal NOT as well as the use of logics in setting group control. One could also have SG2 be the primary SG, while the ON signal would be controlled by the higher priority SG1; this way the setting group would automatically return to SG2 after the automatic control is over.

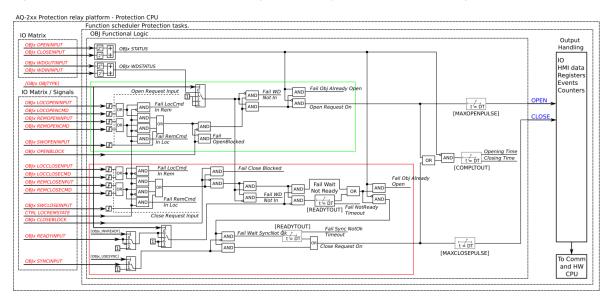
Events

The setting group selection function block (abbreviated "SGS" in event block names) generates events from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

Event block name	Event names
SGS	SG28 Enabled
SGS	SG28 Disabled
SGS	SG18 Request ON
SGS	SG18 Request OFF
SGS	Remote Change SG Request ON

Table. 4.5.2 - 226. Event messages.

Event block name	Event names
SGS	Remote Change SG Request OFF
SGS	Local Change SG Request ON
SGS	Local Change SG Request OFF
SGS	Force Change SG ON
SGS	Force Change SG OFF
SGS	SG Request Fail Not configured SG ON
SGS	SG Request Fail Not configured SG OFF
SGS	Force Request Fail Force ON
SGS	Force Request Fail Force OFF
SGS	SG Req. Fail Lower priority Request ON
SGS	SG Req. Fail Lower priority Request OFF
SGS	SG18 Active ON
SGS	SG18 Active OFF


4.5.3 Object control and monitoring

The object control and monitoring function takes care of both for circuit breakers and disconnectors. The monitoring and controlling are based on the statuses of the device's configured digital inputs and outputs. The number of controllable and monitored objects in each device depends on the device type and amount of digital inputs. One controllable object requires a minimum of two (2) output contacts. The status monitoring of one monitored object usually requires two (2) digital inputs. Alternatively, object status monitoring can be performed with a single digital input: the input's active state and its zero state (switched to 1 with a NOT gate in the Logic editor).

An object can be controlled manually or automatically. Manual control can be done by local control, or by remote control. Local manual control can be done by devices front panel (HMI) or by external push buttons connected to devices digital inputs. Manual remote control can be done through one of the various communication protocols available (Modbus, IEC101/103/104 etc.). The function supports the modes "Direct control" and "Select before execute" while controlled remotely. Automatic controlling can be done with functions like auto-reclosing function (ANSI 79).

The main outputs of the function are the OBJECT OPEN and OBJECT CLOSE control signals. Additionally, the function reports the monitored object's status and applied operations. The setting parameters are static inputs for the function, which can only be changed by the user in the function's setup phase.

Figure. 4.5.3 - 131. Simplified function block diagram of the object control and monitoring function.

Settings

The following parameters help the user to define the object. The operation of the function varies based on these settings and the selected object type. The selected object type determines how much control is needed and which setting parameters are required to meet those needs.

Table. 4.5.3 - 227. Object settings and status parameters.

Name	Range	Default	Description
Local/Remote status	LocalRemote	Remote	Displays the status of the device's "local/remote" switch. Local controls cannot override the open and close commands while device is in "Remote" status. The remote controls cannot override the open and close commands while device is in "Local" status.
Object status force to	 Normal Openreq On Closereq On Opensignal On Closesignal On Closesignal On WaitNoRdy On WaitNoSnc On NotrdyFail On NosyncFail On Opentout On Clotout On Clotout On OpenreqUSR On CloreqUSR On 	Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
OBJ LN mode	 On Blocked Test Test/Blocked Off 	On	Set mode of OBJ block. This parameter is visible only when <i>Allow setting of individual</i> <i>LN mode</i> is enabled in <i>General</i> menu.

© Arcteq Relays Ltd IM00035

Name	Range	Default	Description
OBJ LN behaviour	 On Blocked Test Test/Blocked Off 	-	Displays the mode of OBJ block. This parameter is visible only when <i>Allow setting of individual</i> <i>LN mode</i> is enabled in <i>General</i> menu.
Object name	-	Objectx	The user-set name of the object, at maximum 32 characters long.
Object type	 Withdrawable circuit breaker Circuit breaker Disconnector (MC) Disconnector (GND) 	Circuit breaker	The selection of the object type. This selection defines the number of required digital inputs for the monitored object. This affects the symbol displayed in the HMI and the monitoring of the circuit breaker. It also affects whether the withdrawable cart is in/out status is monitored. See the next table ("Object types") for a more detailed look at which functionalities each of the object types have.
Objectx Breaker status	IntermediateOpenClosedBad	-	Displays the status of breaker. Intermediate is displayed when neither of the status signals (open or close) are active. Bad status is displayed when both status signals (open and close) are active.
Objectx Withdraw status	 WDIntermediate WDCartOut WDCart In WDBad Not in use 	-	Displays the status of circuit breaker cart. WDIntermediate is displayed when neither of the status signals (in or out) are active. WDBad status is displayed when both status signals (in and out) are active. If the selected object type is not set to "Withdrawable circuit breaker", this setting displays the "No in use" option.
Additional status information	 Open Blocked Open Allowed Close Blocked Close Allowed Object Ready Object Not Ready Sync Ok Sync Not Ok 	-	Displays additional information about the status of the object.
Use Synchrocheck	 Not in use Synchrocheck in use 	Not in use	Selects whether the "Synchrocheck" condition is in use for the circuit breaker close command. If "In use" is selected the input chosen to "Sync.check status in" has to be active to be able to close circuit breaker. Synchrocheck status can be either an internal signal generated by synchrocheck function or digital input activation with an external synchrocheck device.
Use Object ready	Ready HighReady LowNot in use	Not in use	Selects whether the "Object ready" condition is in use for the circuit breaker close command. If in use the signal connected to "Object ready status In" has to be high or low to be able to close the breaker (depending on "Ready High or Low" selection).
Open requests	02 ³² –1	-	Displays the number of successful "Open" requests.
Close requests	02 ³² –1	-	Displays the number of successful "Close" requests.

Name	Range	Default	Description
Open requests failed	02 ³² –1	-	Displays the number of failed "Open" requests.
Close requests failed	02 ³² –1	-	Displays the number of failed "Close" requests.
Clear statistics	• - • Clear	-	Clears the request statistics, setting them back to zero (0). Automatically returns to "-" after the clearing is finished.

Table. 4.5.3 - 228. Object types.

Name	Functionalities	Description
Withdrawable circuit breaker	Breaker cart position Circuit breaker position Circuit breaker control Object ready check before closing breaker Synchrochecking before closing breaker Interlocks	The monitor and control configuration of the withdrawable circuit breaker.
Circuit breaker	Position indication Control Object ready check before closing breaker Synchrochecking before closing breaker Interlocks	The monitor and control configuration of the circuit breaker.
Disconnector (MC)	Position indication Control	The position monitoring and control of the disconnector.
Disconnector (GND)	Position indication	The position indication of the earth switch.

Table. 4.5.3 - 229. I/O.

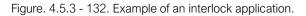
Signal	Range	Description
Objectx Open input ("Objectx Open Status In")		A link to a physical digital input. The monitored object's OPEN status. "1" refers to the active open state of the monitored object.
Objectx Close input ("Objectx Close Status In")	Digital input or other logical signal	A link to a physical digital input. The monitored object's CLOSE status. "1" refers to the active close state of the monitored object.
WD Object In ("Withdrw.CartIn.Status In")	selected by the user (SWx)	A link to a physical digital input. The monitored withdrawable object's position is IN. "1" means that the withdrawable object cart is in.
WD Object Out ("Withdrw.CartOut.Status In")		A link to a physical digital input. The monitored withdrawable object's position is OUT. "1" means that the withdrawable object cart is pulled out.

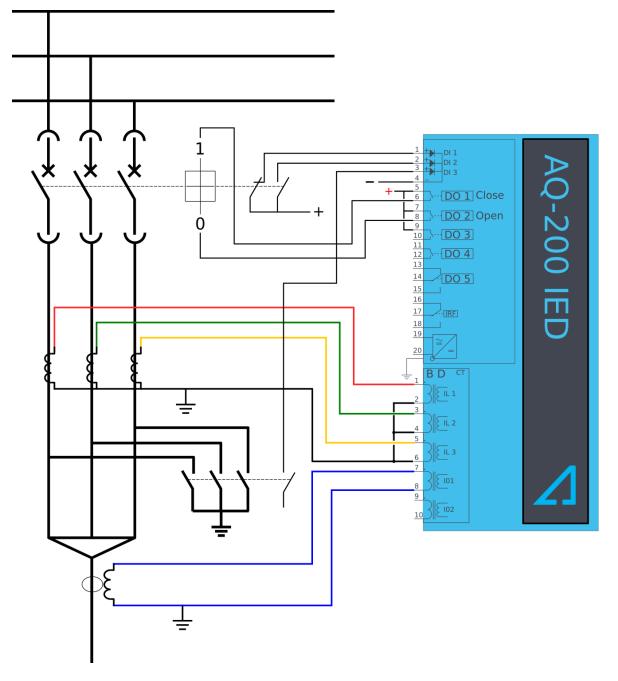
Signal	Range	Description
Object Ready (Objectx Ready status In")		A link to a physical digital input. Indicates that status of the monitored object. "1" means that the object is ready and the spring is charged for a close command.
Syncrocheck permission ("Sync.Check status In")		A link to a physical digital input or a synchrocheck function. "1" means that the synchrocheck conditions are met and the object can be closed.
Objectx Open command ("Objectx Open Command")	OUT1OUTx	The physical "Open" command pulse to the device's output relay.
Objectx Close command ("Objectx Close Command")	0011001x	The physical "Close" command pulse to the device's output relay.

Table. 4.5.3 - 230. Operation settings.

Name	Range	Step	Default	Description
Breaker traverse time	0.02500.00 s	0.02 s	0.2 s	Determines the maximum time between open and close statuses when the breaker switches. If this set time is exceeded and both open and closed status inputs are active, the status "Bad" is activated in the "Objectx Breaker status" setting. If neither of the status inputs are active after this delay, the status "Intermediate" is activated.
Maximum Close command pulse length	0.02500.00 s	0.02 s	0.2 s	Determines the maximum length for a Close pulse from the output relay to the controlled object. If the object operates faster than this set time, the control pulse is reset and a status change is detected.
Maximum Open command pulse length	0.02500.00 s	0.02 s	0.2 s	Determines the maximum length for a Open pulse from the output relay to the controlled object. If the object operates faster than this set time, the control pulse is reset and a status change is detected.
Control termination timeout	0.02500.00 s	0.02 s	10 s	Determines the control pulse termination timeout. If the object has not changed it status in this given time the function will issue error event and the control is ended. This parameter is common for both open and close commands.
Final trip pulse length	0.00500.00 s	0.02 s	0.2 s	Determines the length of the final trip pulse length. When the object has executed the final trip, this signal activates. If set to 0 s, the signal is continuous. If auto-recloser function controls the object, "final trip" signal is activated only when there are no automatic reclosings expected after opening the breaker.

Table. 4.5.3 - 231. Control settings (DI and Application).


Signal	Range	Description
Access level for MIMIC control	UserOperatorConfiguratorSuper user	Defines what level of access is required for MIMIC control. The default is the "Configurator" level.


Signal	Range	Description
Objectx LOCAL Close control input		The local Close command from a physical digital input (e.g. a push button).
Objectx LOCAL Open control input		The local Open command from a physical digital input (e.g. a push button).
Objectx REMOTE Close control input	Digital input or other logical signal selected by the user	The remote Close command from a physical digital input (e.g. RTU).
Objectx REMOTE Open control input		The remote Open command from a physical digital input (e.g. RTU).
Objectx Application Close		The Close command from the application. Can be any logical signal.
Objectx Application Open		The Close command from the application. Can be any logical signal.

Blocking and interlocking

The interlocking and blocking conditions can be set for each controllable object, with Open and Close set separately. Blocking and interlocking can be based on any of the following: other object statuses, a software function or a digital input.

The image below presents an example of an interlock application, where the closed earthing switch interlocks the circuit breaker close command.

In order for the blocking signal to be received on time, it has to reach the function 5 ms before the control command.

Object condition monitoring (circuit breaker wear monitor)

Each object has integrated circuit breaker wear monitor. The circuit breaker wear function is used for monitoring the circuit breaker's lifetime and its maintenance needs caused by interrupting currents and mechanical wear. The function uses the circuit breaker's manufacturer-supplied data for the breaker operating cycles in relation to the interrupted current magnitudes.

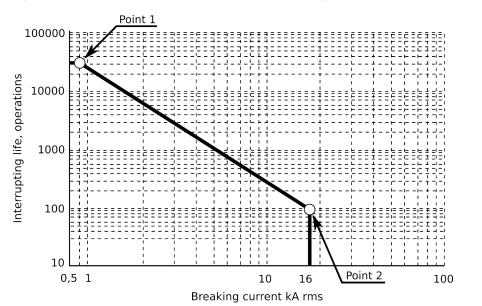


Figure. 4.5.3 - 133. Example of the circuit breaker interrupting life operations. Points 1 and 2 are user settable.

The function is triggered from the circuit breaker's "Open" command output and it monitors the threephase current values in both the tripping moment and the normal breaker opening moment. The maximum value of interrupting life operations for each phase is calculated from these currents. The value is cumulatively deducted from the starting operations starting value. The user can set up two separate alarm levels, which are activated when the value of interrupting life operations is below the setting limit. The "Trip contact" setting defines the output that triggers the current monitoring at the breaker's "Open" command. The function's outputs are ALARM 1 and ALARM 2 signals which can be used for direct I/O controlling and user logic programming.

The function block uses analog current measurement values and always uses the RMS magnitude of the current measurement input.

Signal	Description	Time base
IL1RMS	RMS measurement of phase L1 (A) current	5ms
IL2RMS	RMS measurement of phase L2 (B) current	5ms
IL3RMS	RMS measurement of phase L3 (C) current	5ms

Table. 4.5.3 - 232. Measurement inputs of the circuit breaker wear function.

Condition monitoring parameters can be found from Control \rightarrow Objects \rightarrow Object X \rightarrow APP CONTR \rightarrow Condition Monitoring.

Table. 4.5.3 - 233. Breaker supervision settings and status indications.

Name	Range	Default	Description
Condition monitoring	DisabledEnabled	Disabled	Enabled the breaker condition monitoring function.

Name	Range	Default	Description
Condition monitor status	Normal Alarm1 On Alarm2 On		Displays the status of the monitor.
Open operations	04 294 967 295	-	Displays the total amount of breaker open operations.
Operation time open	04 294 967 295 ms	-	Displays the latest breaker opening time.
Close operations	04 294 967 295	-	Displays the total amount of breaker close operations.
Operation time close	04 294 967 295 ms	-	Displays the latest breaker closing time.
L1 Operations Left			
L2 Operations Left	04 294 967 295	-	Displays the amount of operations left in each phase.
L3 Operations Left			
Object Cumulated 04 294 967 operations 295		-	Displays the total amount of operations.
Clear condition monitoring statistics • - • Clear		-	Clears the operation statistics.
Operations with Current 1 Value allowed	0200 000	50000	Defines the amount of operations with lower current values. See figure above.
Current 1 Value	0.00100.00 kA	1.00 kA	Defines the lower current turnpoint. See figure above.
Operations with Current 2 Value allowed	0200 000	100	Defines amount of operations with higher current values. See figure above.
Current 2 Value	0.00100.00 kA	20.00 kA	Defines the higher current turnpoint. See figure above.
Condition Alarm 1 Enable	DisabledEnabled	Disabled	Enables Alarm 1.
Condition Alarm 1 when operations less than	0200 000	1000	When the amount of operations left is less than value set here, Alarm 1 will activate.
Condition Alarm 2 Enable	DisabledEnabled	Disabled	Enables Alarm 2.
Condition Alarm 2 when operations less than	0200 000	100	When the amount of operations left is less than value set here, Alarm 2 will activate.

Events and registers

The object control and monitoring function (abbreviated "OBJ" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

The function also provides a resettable cumulative counter for OPEN, CLOSE, OPEN FAILED, and CLOSE FAILED events.

Event block name	Description
OBJ1OBJ10	Object Intermediate
OBJ1OBJ10	Object Open
OBJ1OBJ10	Object Close
OBJ1OBJ10	Object Bad
OBJ1OBJ10	WD Intermediate
OBJ1OBJ10	WD Out
OBJ1OBJ10	WD in
OBJ1OBJ10	WD Bad
OBJ1OBJ10	Open Request On
OBJ1OBJ10	Open Request Off
OBJ1OBJ10	Open Command On
OBJ1OBJ10	Open Command Off
OBJ1OBJ10	Close Request On
OBJ1OBJ10	Close Request Off
OBJ1OBJ10	Close Command On
OBJ1OBJ10	Close Command Off
OBJ1OBJ10	Open Blocked On
OBJ1OBJ10	Open Blocked Off
OBJ1OBJ10	Close Blocked On
OBJ1OBJ10	Close Blocked Off
OBJ1OBJ10	Object Ready
OBJ1OBJ10	Object Not Ready
OBJ1OBJ10	Sync Ok
OBJ1OBJ10	Sync Not Ok

Table. 4.5.3 - 234. Event messages of the OBJ function instances 1 – 10.

Event block name	Description
OBJ1OBJ10	Open Command Fail
OBJ1OBJ10	Close Command Fail
OBJ1OBJ10	Final trip On
OBJ1OBJ10	Final trip Off
OBJ1OBJ10	Contact Abrasion Alarm On
OBJ1OBJ10	Contact Abrasion Alarm Off
OBJ1OBJ10	Switch Operating Time Exceeded On
OBJ1OBJ10	Switch Operating Time Exceeded Off
OBJ1OBJ10	XCBR Loc On
OBJ1OBJ10	XCBR Loc Off
OBJ1OBJ10	XSWI Loc On
OBJ1OBJ10	XSWI LOC Off

The function registers its operation into the last twelve (12) time-stamped registers. The table below presents the structure of the function's register content.

Table. 4.5.3 - 235. Register content.

Name	Description	
Date and time	dd.mm.yyyy hh:mm:ss.mss	
Event	Event name	
Recorded Object opening time	Time difference between the object receiving an "Open" command and the object receiving the "Open" status.	
Recorded Object closing time	Time difference between the object receiving a "Close" command and object receiving the "Closed" status.	
Object status	The status of the object.	
WD status	The status of the withdrawable circuit breaker.	
Open fail	The cause of an "Open" command's failure.	
Close fail	The cause of a "Close" command's failure.	
Open command	The source of an "Open" command.	
Close command	The source of an "Open" command.	
General status	The general status of the function.	

4.5.4 Indicator object monitoring

The indicator object monitoring function takes care of the status monitoring of disconnectors. The function's sole purpose is indication and does not therefore have any control functionality. To control circuit breakers and/or disconnectors, please use the Object control and monitoring function. The monitoring is based on the statuses of the configured device's digital inputs. The number of monitored indicators in a device depends on the device type and available inputs. The status monitoring can be performed with a single digital input: the input's active state and its zero state (switched to 1 with a NOT gate in the Logic editor).

The outputs of the function are the monitored indicator statuses (Open, Close, Intermediate and Bad). The setting parameters are static inputs for the function, which can only be changed by the use in the function's setup phase.

The inputs of the function are the binary status indications. The function generates general time stamped ON/OFF events to the common event buffer from each of the following signals: OPEN, CLOSE, BAD and INTERMEDIATE event signals. The time stamp resolution is 1 ms.

Settings

Function uses available hardware and software digital signal statuses. These input signals are also setting parameters for the function.

Name	Range	Default	Description
Indicator name ("Ind. Name")	-	IndX	The user-set name of the object, at maximum 32 characters long.
IndicatorX Object status ("Ind.X Object Status")	IntermediateOpenClosedBad	-	Displays the status of the indicator object. Intermediate status is displayed when neither of the status conditions (open or close) are active. Bad status is displayed when both of the status conditions (open and close) are active.

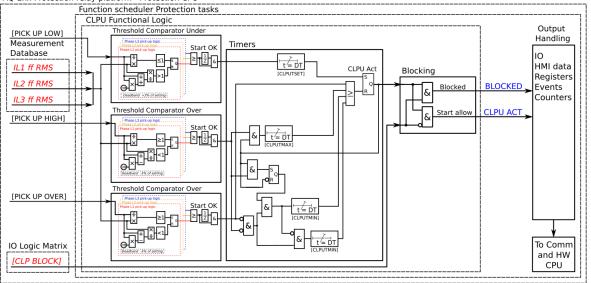
Table. 4.5.4 - 236. Indicator status.

Table. 4.5.4 - 237. Indicator I/O.

Signal	Range	Description	
IndicatorX Open input ("Ind.X Open Status In")	Digital input or other logical signal selected by the user (SWx)	A link to a physical digital input. The monitored indicator's OPEN status. "1" refers to the active "Open" state of the monitored indicator.	
IndicatorX Close input ("Ind.X Close Status In")	Digital input or other logical signal selected by the user (SWx)	A link to a physical digital input. The monitored indicator's CLOSE status. "1" refers to the active "Close" state of the monitored indicator.	

Events

The indicator object monitoring function (abbreviated "CIN" in event block names) generates events from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.


Table. 4.5.4 - 238. Event messages (instances 1-10).

Event block name	Event names
CIN110	Intermediate
CIN110	Open
CIN110	Close
CIN110	Bad

4.5.5 Cold load pick-up (CLPU)

The cold load pick-up function is used for detecting so-called cold load situations, where a loss of load diversity has occured after distribution has been re-energized. The characteristics of cold load situations vary according to the types of loads individual feeders have. This means that this function needs to be set specifically according to the load type of the feeder it is monitoring. For example, in residential areas there are relatively many thermostat-controlled devices (such as heating and cooling machinery) which normally run in asynchronous cycles. When restoring power after a longer power outage, these devices demand the full start-up power which can cause the inrush current to be significantly higher than what the load current was before the outage. This is uncommon in industrial environments since the restoring of the production process takes several hours, or even days, and the power level goes back to the level it was before the outage. However, some areas of the industrial network may find the cold load pick-up function useful.

Figure. 4.5.5 - 134. Simplified function block diagram of the cold load pick-up function.

AQ-2xx Protection relay platform - Protection CPU

Measured input

The function block uses fundamental frequency component of phase current measurement values.

Table. 4.5.5 - 239. Measurement inputs of the cold load pick-up function.

Signal	Description	Time base
IL1RMS	Fundamental frequency component of phase L1 (A) current	5ms
IL2RMS	Fundamental frequency component of phase L2 (B) current	5ms
I _{L3} RMS	Fundamental frequency component of phase L3 (C) current	5ms

Pick-up settings

The I_{low} , I_{high} and I_{over} setting parameters control the the pick-up and activation of the cold load pickup function. They define the maximum and minimum allowed measured current before action from the function. The function constantly calculates the ratio between the setting values and the measured magnitude (I_m) for each of the three phases. The reset ratio of 97 % is built into the function and is always relative to the setting value. The setting value is common for all measured phases. When the I_m exceeds the setting value (in single, dual or all phases) it triggers the pick-up operation of the function.

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

Name	Range	Step	Default	Description
llow	0.0140.00×In	0.01×ln	0.20×In	The pick-up setting for low current detection. All measured currents must be below this setting in order for the cold load pick-up signal to be activated.
lhigh	0.0140.00×In	0.01×ln	1.20×In	The pick-up setting for high current detection. All measured currents must exceed this setting in order for the cold load pick-up signal to be activated.
l _{over}	0.0140.00×In	0.01×ln	2.00×In	The pick-up setting for overcurrent detection. If this setting is exceeded by any of the measured currents, the cold load pick-up signal is released immediately.

Table. 4.5.5 - 240. Pick-up settings.

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Table. 4.5.5 - 241. Information displayed by the function.

Name	Range	Description
CLPU LN behaviour	 On Blocked Test Test/ Blocked Off 	Displays the mode of CLP block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.

Name	Range	Description
CLP condition	 Normal Curr low Overcurrent On CLPU On CLPU blocked 	Displays status of the control function.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a CLPU ACT signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the CLPU ACT function has been activated before the blocking signal, it resets and processes the release time characteristics similarly to when the pick-up signal is reset.

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics

The behavior of the function's operating timers can be set for activation as well as for the situation monitoring and release of the cold load pick-up.

The table below presents the setting parameters for the function's time characteristics.

Name	Range	Step	Default	Description
T _{set}	0.0001800.000s	0.005s	10.000s	The function's start timer which defines how long the I_{low} condition has to last before the cold load pick-up is activated.
T _{max}	0.0001800.000s	0.005s	30.000s	The function's maximum timer which defines how long the starting condition can last and for how long the current is allowed to be over I_{high} .
T _{min}	0.0001800.000s	0.005s	0.040s	The function's minimum timer which defines how long the starting condition has to last at the minimum. If the start-up sequence includes more than one inrush situation, this parameter may be used to prolong the cold load pick-up time over the first inrush. Additionally, this parameter operates as the "reclaim" time for the function in case the inrush current is not immediately initiated in the start-up sequence.

Table. 4.5.5 - 242. Setting parameters for operating time characteristics.

The six examples below showcase some typical cases with the cold load pick-up function.

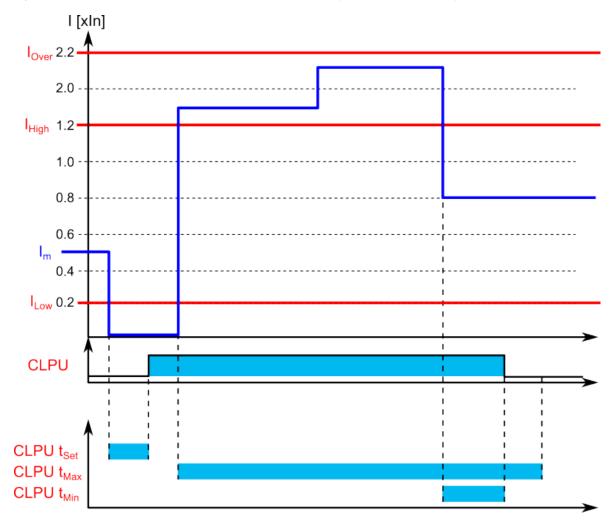
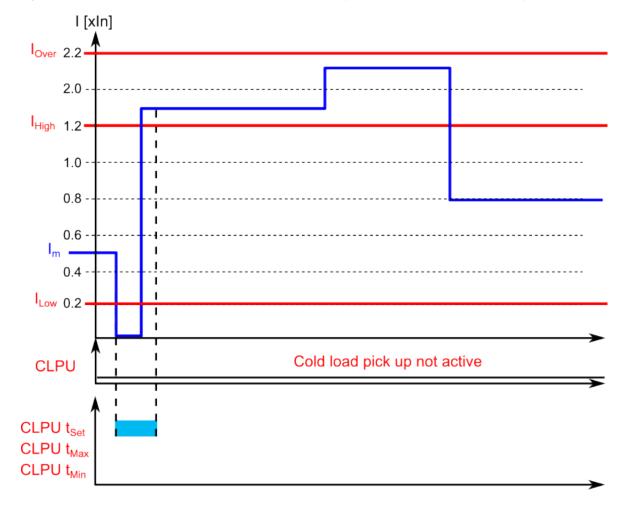
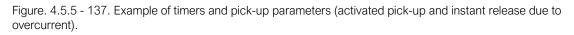
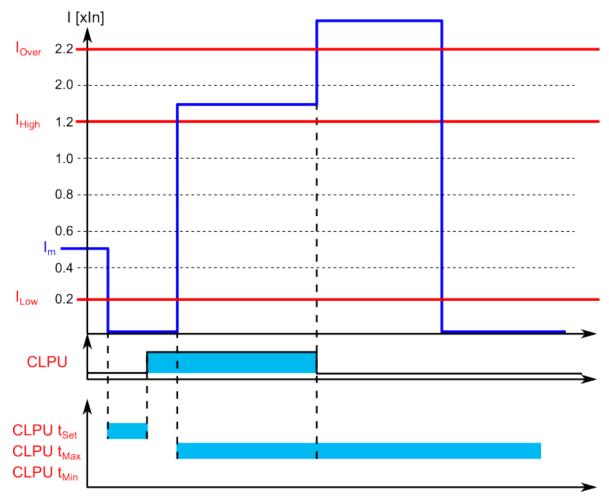
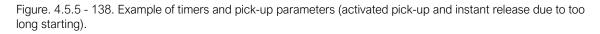
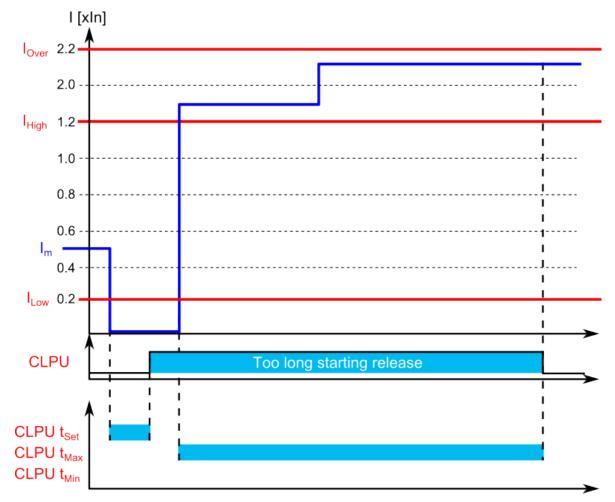


Figure. 4.5.5 - 135. Example of timers and pick-up parameters (normal CLPU situation).

In the example above, the cold load pick-up function activates after the measured current dips below the I_{low} setting and has been there for T_{set} amount of time. When the current exceeds the I_{high} setting value, a timer starts counting towards the T_{max} time. The pick-up current is cleared before the the counter reaches the T_{max} time, when the measured current goes between of I_{low} and the I_{high} . This is when the start-up condition is considered to be over. The cold load pick-up signal can be prolonged beyond this time by setting the T_{min} to a value higher than 0.000 s.


Figure. 4.5.5 - 136. Example of timers and pick-up parameters (no cold load pick-up, I_{low} too short).


In the example above, the cold load pick-up function does not activate even when the measured current dips below the I_{low} setting, because the T_{set} is not exceeded and therefore no cold load pick-up signal is issued. If the user wants the function to activate within a shorter period of time, the T_{set} parameter can be se to a lower value. If the user wants no delay, the T_{set} can be zero seconds and the operation will be immediate.

In the example above, the cold load pick-up function activates after the measured current dips below the I_{low} setting and has been there for T_{set} amount of time. When the I_m exceeds the I_{high} setting, a counter starts counting towards the T_{max} time. The measured current exceeds the I_{over} setting during the start-up situation and causes the cold load pick-up signal to be released immediately.

In the example above, the cold load pick-up function activates after the measured current has stayed below the I_{low} setting for a T_{set} amount of time. When the current exceeds the I_{high} setting, a timer starts counting towards the T_{max} time. The measured current stays above the I_{high} setting until the T_{max} is reached, which causes the release of the cold load pick-up signal.

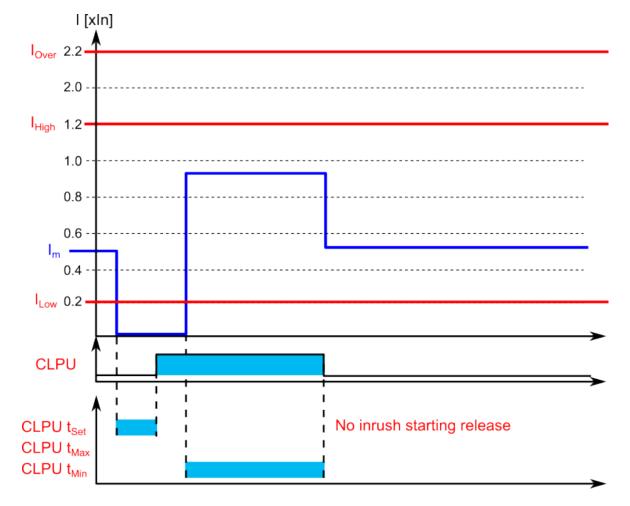


Figure. 4.5.5 - 139. Example of timers and pick-up parameters (no inrush current detected in the starting).

In the example above, the cold load pick-up function activates after the measured current has stayed below the I_{low} setting for a T_{set} amount of time. The current stays between the I_{low} setting and the I_{high} setting, so the cold load pick-up signal is active for T_{min} time. As no inrush current is detected during that time, the signal is released.

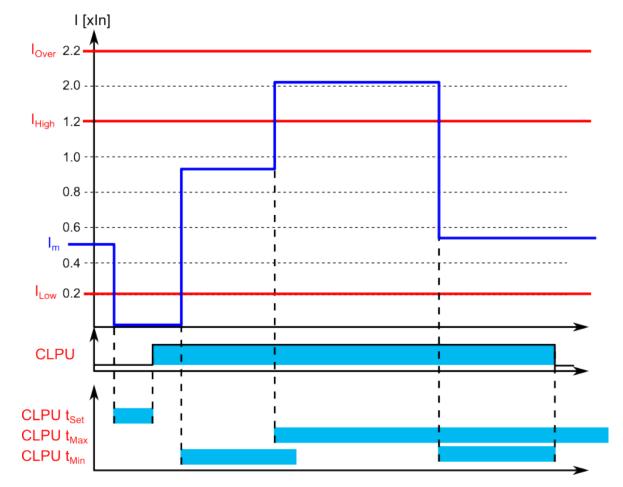


Figure. 4.5.5 - 140. Example of timers and pick-up parameters (an inrush current detected during T_{min} time).

In the example above, the cold load pick-up function activates after the measured current has stayed below the I_{low} setting for a T_{set} amount of time. The current increases to between the I_{low} setting and the I_{high} setting, which causes a counter to start counting towards the T_{min} time. Before the counter reaches T_{min} , the current exceeds the I_{high} setting, which causes a counter to start counting towards the T_{max} time. The cold load pick-up signal remains active until the T_{max} has been reached, or until the start-up is over and the T_{min} time is over.

Events and registers

The cold load pick-up function (abbreviated "CLP" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a resettable cumulative counter for the CLPU ACT and BLOCKED events.

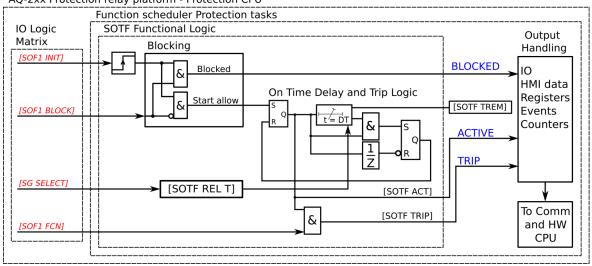
Event block name	Event names
CLP1	LowStart ON
CLP1	LowStart OFF
CLP1	HighStart ON

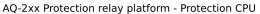
Tahle	455-	243	Event	messages.
Table.	4.0.0 -	240.	LVEIIL	messages.

Event block name	Event names
CLP1	HighStart OFF
CLP1	LoadNormal ON
CLP1	LoadNormal OFF
CLP1	Overcurrent ON
CLP1	Overcurrent OFF
CLP1	CLPUActivated ON
CLP1	CLPUActivated OFF
CLP1	Block ON
CLP1	Block OFF

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for ACTIVATED, BLOCKED, etc. The table below presents the structure of the function's register content.

Table. 4.5.5 - 244.	Register content.
---------------------	-------------------


Register	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
L1/L2/L3 current	Phase currents on trigger time
Time to CLPUact	Time remaining before the function is active
CLPU active time	The time the function has been active before starting
Start-up time	Recorded starting time
Releasing time of CLPU	Reclaim time counter
Setting group in use	Setting group 18 active


4.5.6 Switch-on-to-fault (SOTF)

The switch-on-to-fault (SOTF) function is used for speeding up the tripping when the breaker is closed towards a fault or forgotten earthing to reduce the damage in the fault location. The function can be used to control protection functions, or it can be used to directly trip a breaker if any of the connected protection functions starts during the set SOTF time. The operation of the function is instant after the conditions are met and any one signal connected to the "*Function input*" input activates.

The function can be initiated by a digital input, or by a circuit breaker "Close" command connected to the "*SOTF activate input*" input. The duration of the SOTF-armed condition can be set by the "Release time for SOTF" setting parameter; it can be changed if the application so requires through setting group selection.

Figure. 4.5.6 - 141. Simplified function block diagram of the switch-on-to-fault function.

Input signals

The function block does not use analog measurement inputs. Instead, its operation is based entirely on binary signal statuses.

Table. 4.5.6 - 245. Input signals.

Input	Description
Activate input	The digital input or logic signal for the function to arm and start calculating the SOTF time. Any binary signal can be used to activate the function and start the calculation. The rising edge of the signal is considered as the start of the function.
Block input	The input for blocking the function. Any binary signal can be used to block the function from starting.
Function input	The function input activates the function's instant trip if applied when the function is calculating the SOTF time.

Settings

The switch-on-to-fault function has one setting and it determines how long the function remains active after it has been triggered. If the inputs receive any of the set signals during this time, the function's trip is activated.

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

Name	Range	Default	Description
SOTF LN mode	 On Blocked Test Test/Blocked Off 	On	Set mode of SOF block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.

Table	. 4.5.6 -	246.	Settings	of the	function.
--------------	-----------	------	----------	--------	-----------

Name	Range	Default	Description
SOTF force status to	NormalBlockedActiveTrip	Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
Release time for SOTF	0.0001800.000s	1.000s	The time the function is active after triggering.

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Name	Range	Description
SOTF LN behaviour	 On Blocked Test Test/ Blocked Off 	Displays the mode of SOF block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
SOTF condition	 Normal Init Active Trip Blocked 	Displays status of the control function.

Function blocking

The function can be blocked by activating the BLOCK input. This prevents the function's active time from starting.

Events and registers

The switch-on-to-fault function (abbreviated "SOF" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a resettable cumulative counter for the INIT, BLOCKED, ACTIVE and TRIP events.

Event block name	Event names	
SOF1	SOTF Init ON	
SOF1	SOTF Init OFF	

Table. 4.5.6 - 248. Event messages.	Table.	5.6 - 248. Event messages.
-------------------------------------	--------	----------------------------

Event block name	Event names
SOF1	SOTF Block ON
SOF1	SOTF Block OFF
SOF1	SOTF Active ON
SOF1	SOTF Active OFF
SOF1	SOTF Trip ON
SOF1	SOTF Trip OFF

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON process data of ACTIVATED events. The table below presents the structure of the function's register content.

Table. 4.5.6 - 249. Register content.

Register	Description	
Date and time	dd.mm.yyyy hh:mm:ss.mss	
Event	Event name	
Used SG	Setting group 18 active	
SOTF remaining time	The time remaining of the set release time.	
SOTF been active time	The time the function has been active.	

4.5.7 Milliampere output control

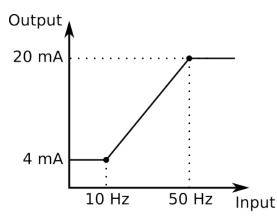
The milliamp current loop is the prevailing process control signal in many industries. It is an ideal method of transferring process information because a current does not change as it travels from a transmitter to a receiver. It is also much more simple and cost-effective.

The benefits of 4...20 mA loops:

- the dominant standard in many industries
- · the simplest option to connect and configure
- uses less wiring and connections than other signals, thus greatly reducing initial setup costs
- good for travelling long distances, as current does not degrade over long connections like voltage
 does
- · less sensitive to background electrical noise
- detects a fault in the system incredibly easily since 4 mA is equal to 0 % output.

Milliampere (mA) outputs

AQ-200 series supports up to two (2) independent mA option cards. Each card has four (4) mA output channels and one (1) mA input channel. If the device has an mA option card, enable mA outputs at *Control* \rightarrow *Device IO* \rightarrow *mA outputs*. The outputs are activated in groups of two: channels 1 and 2 are activated together, as are channels 3 and 4.


Table. 4.5.7 - 250. Main settings (output channels).

Name		Range	Default	Description
mA option	Enable mA output channels 1 and 2	Disabled	I Disabled	Enables and disables the outputs of the mA output card 1.
card 1	Enable mA output channels 3 and 4	Enabled		
mA option	Enable mA output channels 5 and 6	Disabled	abled	Enables and disables the outputs of the mA output card 2.
card 2	Enable mA output channels 7 and 8	Enabled	Disabled	

Table. 4.5.7 - 251. Settings for mA output channels.

Name	Range	Step	Default	Description
Enable mA output channel	DisabledEnabled	-	Disabled	Enables and disables the selected mA output channel. If the channel is disabled, the channel settings are hidden.
Magnitude selection for mA output channel	 Currents Voltages Powers Impedance and admittance Other 	-	Currents	Defines the measurement category that is used for mA output control.
Magnitude of mA output channel	(dependent on the measurement category selection)	-	(dependent on the measurement category selection)	Defines the measurement magnitude used for mA output control. The available measurements depend on the selection of the "Magnitude selection for mA output channel" parameter.
Input value 1	-10 ⁷ 10 ⁷	0.001	0	The first input point in the mA output control curve.
Scaled mA output value 1	0.000024.0000mA	0.0001mA	0mA	The mA output value when the measured value is equal to or less than Input value 1.
Input value 2	-10 ⁷ 10 ⁷	0.001	1	The second input point in the mA output control curve.
Scaled mA output value 2	0.000024.0000mA	0.0001mA	0mA	The mA output value when the measured value is equal to or greater than Input value 2.

Enable mA Out Channel 1	Enabled 💌
mA Out Channel 1 Magnitude selection	Others 💌
mA Out Channel 1 Magnitude (Others)	Svstem f. 💌
Input value 1	10 - <i>10000000.00010000000.000</i> [0.001]
Scaled mA output value 1	4 mA 0.0000024.00000 [0.00010]
Input value 2	50 - <i>10000000.000., 10000000.000 [0.001</i>]
Scaled mA output value 2	20 mA 0.0000024.00000 [0.00010]
mA Out Channel 1 Input Magnitude now	0 - <i>10000000.0001000000.000 [0.001</i>]
mA Out Channel 1 Outputs now	0 mA 0.0000024.00000 [0.00010]

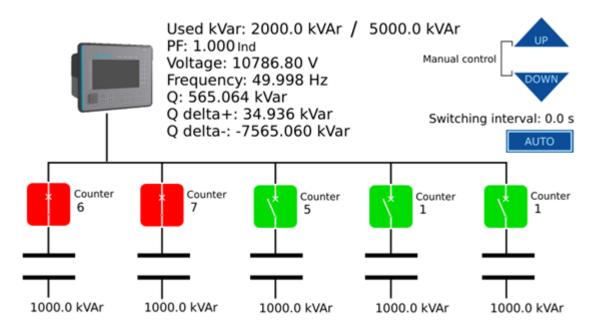
Table. 4.5.7 - 252. Hardware indications.

Name	Range	Description
Hardware in mA output channels 14 Hardware in mA output channels 58	 None Slot A Slot B Slot C Slot D Slot E Slot F Slot G Slot H Slot I Slot J Slot K Slot N Slot N Too many cards installed 	Indicates the option card slot where the mA output card is located.

Table. 4.5.7 - 253. Measurement values reported by mA output cards.

Name	Range	Step	Description
mA in Channel 1	0.000024.0000mA	0.0001mA	Displays the measured mA value of the selected input channel.
mA in Channel 2	0.000024.000011A		
mA Out Channel Input Magnitude now	-10 ⁷ 10 ⁷	0.001	Displays the input value of the selected mA output channel at that moment.
mA Out Channel Outputs now	0.000024.0000mA	0.0001mA	Displays the output value of the selected mA output channel at that moment.

4.5.8 Power factor controller (90PF)


The power factor controller (90PF), or the PFC, is the control unit of an automatic capacitor bank system. It performs the switching of capacitors to reach a user-defined target $\cos \varphi$. With the integration of a power factor controller, it is possible to optimize processes, to speed up troubleshooting, and to reduce costs of the supervised systems.

The power factor controller permanently monitors the reactive power of the installation and controls the power factor. The controlling is done by connecting and disconnecting the power capacitor banks. When the power factor decreases, the controller activates the capacitors sequentially. The controller will continue to add capacitors in parallel to the load until a sufficient value of the power factor is attained.

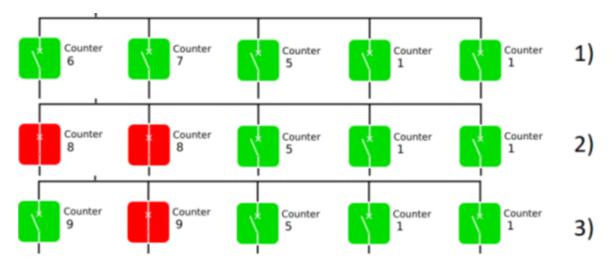
In power factor correction, the power factor (represented as "k") is the ratio of the active power (kilowatts) divided by the reactive power (kilovars). The power factor value is between 0.0 and 1.00. If the power factor is above 0.8, the device is using power efficiently. A standard power supply has a power factor of 0.70-0.75, and a power supply with PFC has a power factor of 0.95-0.99.

In addition to power factor correction, it possible to indicate current, voltage, power, frequency, and other values. The capacitor bank protection relay AQ-C255x operates like the brain of the power correction system (see the figure below).

Figure. 4.5.8 - 143. Power factor controller configuration for up to five capacitor banks.

AQ-C255x has a highly advanced algorithm that allows a user to have up to five (5) capacitor banks, each with their own bank value from 1...50 000 kVar.

The power factor controller has various benefits:


- Controls 1...5 capacitor banks.
- Can be installed very simply.
- Has a controllable color mimic with active feedback.
- Has both automatic and manual modes.
- Can operate while one or more capacitor banks are under maintenance.
- Has an adjustable frequency range, without a harmonics effect.
- Has a wide range of communication options and controllable alarms.

Bank connection modes

FIFO (First In First Out)

The First In First Out (FIFO) mode connects capacitor banks in order from left to right and removes them in the same order starting from the left. In the example below, this would mean Bank 1, Object 1.

Figure. 4.5.8 - 144. First in first out (FIFO).

- 1. All banks are disconnected and objects are in the open state.
- 2. The first bank to be closed in FIFO Mode is Bank 1, while Bank 2 comes second.
- 3. The first bank to be removed is the first bank on the left (Bank 1).
- 4. Step 4 would be to connect Bank 1 again after the discharge time has passed. If the switch interval time of Bank 1 is still on-going and a command to close another bank is at hand, Bank 3 would be closed instead.

Connect banks based on the counter values

If the least used bank should be connected each time, set the connected banks based on the counter values as "Yes". This setting is available and visible in the AQtivate 200 software under the PFC funtion's *Info* tab once the FIFO mode is selected. Counter values can be cleared or set manually if needed.

FILO (First In Last Out)

The First In Last Out (FILO) mode connects capacitor banks in order from left to right, and removes them in reverse order starting from the last on the right. When it comes to the switch interval time and operation during bank discharging, the same rules apply as with FIFO Mode (described above).

Inputs and outputs

The following list presents all the input control parameters for the PFC function:

- PFC manual binary input
- PFC auto binary input
- PFC power factor control binary input
- PFC voltage control binary input
- Input for out of service (Bank 1)
- Input for out of service (Bank 2)
- Input for out of service (Bank 3)
- Input for out of service (Bank 4)
- Input for out of service (Bank 5)
- PFC> BLOCK

The following list presents all the output control parameters for the PFC function:

- · Cap+ limit reached
- Cap. limit reached

- Cap+ starting
- Cap- starting
- Cap+ request pulse
- · Cap- request pulse
- Switch interval time on
- Bank 1 switching failure
- Bank 2 switching failure
- Bank 3 switching failure
- Bank 4 switching failure
- Bank 5 switching failure
- Discharge time on
- PFC> BLOCKED

Measured inputs

The device measures three voltages either line-to-line or line-to-neutral together with three phase currents. Power factor and reactive power are calculated from only one of the connected voltage and current channels.

Used voltage and current channel must be chosen for power factor and reactive power calculation.

Signal	Description	Time base
I _{L1} RMS	Fundamental frequency component of phase L1 (A) current measurement	5 ms
I _{L2} RMS	Fundamental frequency component of phase L2 (B) current measurement	5 ms
IL3RMS	Fundamental frequency component of phase L3 (C) current measurement	5 ms
UL1RMS	Fundamental frequency component of U _{L1} /V voltage measurement	5 ms
UL2RMS	Fundamental frequency component of UL2/V voltage measurement	5 ms
U _{L3} RMS	Fundamental frequency component of UL3/V voltage measurement	5 ms
U _{L12} RMS	Fundamental frequency component of U _{L12} /V voltage measurement	5 ms
U _{L23} RMS	Fundamental frequency component of UL23/V voltage measurement	5 ms

Table. 4.5.8 - 254. Measurement inputs of the power factor controller function.

General settings

The following parameters define the general settings of the function the basic settings of the capacitor banks, and those of the overall application.

Table. 4.5.8 - 255. General settings for capacitor banks and the application in use.

Name	Range	Description
PFC> mode	DisabledActivated	Activates the power factor controller function.
PFC> condition	 Normal Discharging Blocked Switching Starting 	Displays the status of the power factor controller.
Capacitor bank current measurement	Three-phaseSingle-phase	Selects whether the capacitor bank's current measurement is from the connected three-phase CTs, or only from the CT of phase IL2.
Controlled banks	15	Selects the number of capacitor banks.
Operating mode	FIFOFILO	Determines the order in which the banks are connected and disconnected. Please read the more detailed descriptions of the modes above in this chapter.
Control type	Voltage controlSensitivity control	Selects the control type. Sensitivity control means PF-based control, while voltage control operates based on the voltage level.
Control mode	ManualAutomatic	Selects the control mode. Automatic control mode is the default scheme for the power factor controller. Manual control mode should only be used when the bank's kVar level (see the next parameter below) needs to be adjusted manually to a certain level.
Bank 15 kVar	1.050 000.0 kVar	Adjusts the bank's kVar level based on the application's values.

When a capacitor bank is in regular use, the automatic control mode should be applied. For each application with 1...5 capacitor banks, the user must set the kVar level of each bank individually in the function's *Info* tab.

Real-time information displayed by the function

The function's *Info* tab displays useful, real-time information on the state of the function. It is accessed either through the device's HMI display, or through the AQtivate 200 software when it is connected to the device and its Live Edit mode is active.

The real-time information available in the Info tab is presented below.

Name	Description
Max kVar (reserve)	Combines the maximum possible amount of kVar that can be connected in the application. The value is calculated based on the given values of the kVar settings for the capacitor banks in use.

Table. 4.5.8 - 256. Real-time information for the function.

Name	Description
Total kVar (in use)	Displays the current kVar level that is used and connected to the system. The value is formed based on both open and closed circuit breaker (15) statuses.
Power factor	Displays the measured power factor.
Bank 15 condition	Displays the condition of a selected capacitor bank as "Off" or "Active", which shows whether the capacitor bank in question is connected to the system or not.
Bank 15 switching object	The controlled objects of banks 15 are fixed based on their running number: Capacitor bank 1 controls Object 1, Capacitor bank 2 controls Object 2, and so on.

The following information is also available in the device's mimic display, among many others:

- max. kVar (reserve)
- total kVar (in use)
- power factor
- power factor direction
- bank condition (as object status)
- bank 1...5 kVar value
- frequency
- total harmonic distortion (THD)
- capacitance limits

The default mimic view can be adjusted for each of the 1...5 capacitor banks according to application requirements.

Pick-up settings

The PFC's operating level, where the function starts to increase or decrease the total kVar level, is determined byt the cos phi set points and the kVar thresholds.

Increasing the capacitance requires that both the "Cos phi set point (cap+)" and "More capacitance +kVar threshold" parameters have been exceeded. At the same time the measured current amplitude must be above the "Minimum current block limit" setting. If these three conditions are met, the *Cap+ limit reached* signal activates in the output matrix. After a set time (set in the "Bank control starting delay" pick-up setting) has passed, the *Cap+ request pulse* signal activates in the output matrix for 250 ms, and the next capacitor bank is ordered to close to further increase the capacitance in the network. Please note that if internal blocking is enabled, the *Cap+ request pulse* signal will <u>not</u> activate, even though the *Cap+ limit reached* signal remains active while all the conditions are met! Reversely, decreasing the network's capacitance requires that the "Cos phi set point (cap–)" and "Less capacitance –kVar threshold" parameters <u>must</u> both be exceeded.

The power factor controller has no hysteresis for the cos phi set points. It uses a discharge time instead.

The function's automatic opertation is boosted internally by the "Switch interval" parameter: during the time set for this parameter, no capacitor bank will be controlled!

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

Table. 4.5.8 - 257. Pick-up settings.

Name	Range	Step	Default	Description	
Cos phi set point (cap+)	-1.001.00	0.01	0.95	Sets the operating condition of the power factor controller for more capacitance.	
Cos phi set point (cap–)	-1.001.00	_	0.99	Sets the operating condition of the power factor controller for less capacitance.	
More capacitance +kVar threshold	–50 00050 000 kVar	0.1 kVar	600 kVar	Sets the threshold for the capacitance increase.	
Less capacitance –kVar threshold	–50 00050 000 kVar	0.1 kVar	–400 kVar	Sets the threshold for the capacitance decrease.	
Minimum current block limit	0.001.00 p.u.	0.01 p.u.	0.30 p.u.	Sets the minimum current limit for blocking.	
Bank control starting delay	1.01 800.0 s	0.1 s	1.0 s	Sets the delay for bank control starting.	
Fast bank recontrol in use	• No • Yes	_	Yes	Bank operation activates after starting delay has exceeded and bank is controlled. After bank opening or closing, a switching interval time is run and all automated control is blocked during t period. In case terms for another bank control are still there after switching time delay has passed, another bank will be controlled right away without starting delay in case fast bank recontrol is enabled.	
Switch interval	1.01 800.0 s	0.1 s	60.0 s	Sets the time interval for switching (aka the blocking condition).	

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pickup signal is reset.

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Discharge time

The discharge time (defined with the "Switch interval" parameter) is used to limit the capacitor bank control from adjusting the steps too fast. Is is mandatory to wait a specific time between each step, regardless of whether the adjustment is to increase or decrease the kVar level. The discharge time can be set to 1.0...1 800.0 seconds in steps of 0.1 seconds.

Events

The power factor controller function (abbreviated "PFC" in event block names) generates events from the status changes in the events listed below. The user can select the status ON or OFF for messages in the main event buffer. The function's output signals can be used for direct I/O controlling and user logic programming. The events triggered by the function are recorded with a time stamp.

The function offers four (4) independent stages; the events are segregated for each stage operation.

Event block name	Description			
PFC1	Increase capacitance request ON			
PFC1	Increase capacitance request OFF			
PFC1	Decrease capacitance request ON			
PFC1	Decrease capacitance request OFF			
PFC1	Discharge time ON			
PFC1	Discharge time OFF			
PFC1	Automatic control mode ON			
PFC1	Automatic control mode OFF			
PFC1	PFC block ON			
PFC1	PFC block OFF			

Table. 4.5.8 - 258. Event codes.

4.5.9 Programmable control switch

The programmable control switch is a control function that controls its binary output signal. This output signal can be controlled locally from the device's mimic (displayed as a box in the mimic) or remotely from the RTU. The main purpose of programmable control switches is to block or enable function and to change function properties by changing the setting group. However, this binary signal can also be used for any number of other purposes, just like all other binary signals. Once a programmable control switch has been activated or disabled, it remains in that state until given a new command to switch to the opposite state (see the image below). The switch cannot be controlled by an auxiliary input, such as digital inputs or logic signals; it can only be controlled locally (mimic) or remotely (RTU).

PCS status PCS activation command PCS deactivation command

Settings.

These settings can be accessed at Control \rightarrow Device I/O \rightarrow Programmable control switch.

Table. 4.5.9 - 259. Settings.

Name	Range	Default	Description
Switch name	-	Switchx	The user-settable name of the selected switch. The name can be up to 32 characters long.
Access level for Mimic control	UserOperatorConfiguratorSuper user	Configurator	Determines which access level is required to be able to control the programmable control switch via the Mimic.

Events

The programmable control switch function (abbreviated "PCS" in event block names) generates events from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp. The function offers five (5) independent switches. The function's output signals can be used for direct I/O controlling and user logic programming.

Table. 4.5.9 - 260. Event messages.

Event block name	Event names
PCS	Switch 1 ON
PCS	Switch 1 OFF
PCS	Switch 2 ON
PCS	Switch 2 OFF
PCS	Switch 3 ON
PCS	Switch 3 OFF
PCS	Switch 4 ON
PCS	Switch 4 OFF
PCS	Switch 5 ON
PCS	Switch 5 OFF

4.5.10 User buttons

AQ-250 devices have twelve (12) physical user buttons in the front panel of the device. The main purpose of user buttons is to block or enable functions and to change function properties by changing the setting group. However, this binary signal can also be used for any number of other purposes, just like all other binary signals. Push buttons have two operation modes: "Press release" and "Toggle On/Off". In "Press release" mode the push button status is active while the button is pressed down. In "Toggle On/Off" mode push button status toggles between "On" and "Off". Each button has a user configurable LED at the top left corner of the button. The LED can be configured to activate red, orange or green color from button status or any other logical binary signal.

General user button settings and LED activation settings can be set at *Control* \rightarrow *Device IO* \rightarrow *Userbutton Settings*.

NOTICE!

Status of push button output can only be controlled from the AQ-200 device front panel i.e. can't be controlled remotely. Therefore it is recommended to use "a virtual button" (programmable control switches or logical inputs) if a toggleable signal must be controlled both locally and remotely.

Table. 4.5.10 - 261. User button settings

Name	Range	Step	Default	Description
User editable description 112	-	-	BTN112	Description of the button. If "Function button" view has been added to the "Carousel design", these descriptions are used for the buttons.
Mode of Push- button	Press release Toggle On/Off	-	Press release	Defines the operation mode of the button. In "Press release" mode the button signal is active while the button is pressed down. In "Toggle On/Off" mode the button signal changes status between "On" and "Off" each time the button is pressed.

Table. 4.5.10 - 262. User button output signals

Signal name	Description		
Status Push-button 112 On	"On" status of each push-button		
Status Push-button 112 Off	"Off" status of each push-button		

4.5.11 Analog input scaling curves

Sometimes when measuring with RTD inputs, milliampere inputs and digital inputs the measurement might be inaccurate because the signal coming from the source is inaccurate. One common example of this is tap changer location indication signal not changing linearly from step to step. If the output difference between the steps are not equal to each other, measuring the incoming signal accurately is not enough. "Analog input scaling curves" menu can be used to take these inaccuracies into account.

Analog input scaling curve settings can be found at *Measurement* \rightarrow *AI(mA, DI volt) scaling* menu.

Currently following measurements can be scaled with analog input scaling curves:

• RTD inputs and mA inputs in "RTD & mA input" option cards

- mA inputs in "4x mA output & 1x mA input" option cards
- mA input in "4x mA input & 1x mA output" option cards
- Digital input voltages

Table. 4.5.11 - 263. Main settings (input channel).

Name	Range	Step	Default	Description
Analog input scaling	DisabledActivated	-	Disabled	Enables and disables the input.
Scaling curve 110	DisabledActivated	-	Disabled	Enables and disables the scaling curve and the input measurement.
 S7 mA Input S8 mA Input S15 mA Input S16 mA Input D11D120 Voltage RTD S1S16 Resistance mA In 1 (I card 1) mA In 2 (I card 2) mA In 2 (I card 1) mA In 2 (T card 1) mA In 3 (T card 1) mA In 4 (T card 2) mA In 2 (T card 2) mA In 1 (T card 2) mA In 3 (T card 2) mA In 2 (T card 2) mA In 1 (T card 2) mA In 3 (T card 2) mA In 4 (T card 2) 		-	S7 mA Input	Defines the measurement used by scaling curve.
Curve 110 input signal filtering	• No • Yes	-	No	Enables calculation of the average of received signal.
Curve 110 input signal filter time constant	0.0053800.000 s	0.005 s	1 s	Time constant for input signal filtering. This parameter is visible when "Curve 14 input signal filtering" has been set to "Yes".
Curve 110 input signal out of range set	• No • Yes	-	No	Enables out of range signals. If input signal is out of minimum and maximum limits, "ASC14 input out of range" signal is activated.
Curve110 input minimum	-1 000 000.001 000 000.00	0.00001	0	Defines the minimum input of the curve. If input is below the set limit, "ASC14 input out of range" is activated.

Name	Range	Step	Default	Description
Curve 110 input	-1 000 000.001 000 000.00	0.00001	-	Displays the input measurement received by the curve.
Curve110 input maximum	-1 000 000.001 000 000.00	0.00001	0	Defines the maximum input of the curve. If input is above the set limit, "ASC14 input out of range" is activated.
Curve110 output	-1 000 000.001 000 000.00	0.00001	-	Displays the output of the curve.

The input signal filtering parameter calculates the average of received signals according to the set time constant. This is why rapid changes and disturbances (such as fast spikes) are smothered. The Nyquist rate states that the filter time constant must be at least double the period time of the disturbance process signal. For example, the value for the filter time constant is 2 seconds for a 1 second period time of a disturbance oscillation.

$$H(s) = \frac{Wc}{s + Wc} = \frac{1}{1 + s/Wc}$$

When the curve signal is out of range, it activates the "ASC1...10 input out of range" signal, which can be used inside logic or with other functions of the device. The signal can be assigned directly to an output relay or to an LED in the I/O matrix. The "Out of range" signal is activated, when the measured signal falls below the set input minimum limit, or when it exceeds the input maximum limit.

If for some reason the input signal is lost, the value is fixed to the last actual measured cycle value. The value does not go down to the minimum if it has been something else at the time of the signal breaking.

Name	Range	Step	Default	Description
Curve 110 update cycle	510 000ms	5ms	150ms	Defines the length of the input measurement update cycle. If the user wants a fast operation, this setting should be fairly low.
Scaled value handling	 Floating point Integer out (Floor) Integer (Ceiling) Integer (Nearest) 	-	Floating point	Rounds the milliampere signal output as selected.
Input value 1	04000	0.000 01	0	The measured input value at Curve Point 1.
Scaled output value 1	-10 ⁷ 10 ⁷	0.000 01	0	Scales the measured milliampere signal at Point 1.
Input value 2	04000	0.000 01	1	The measured input value at Curve Point 2.

Table. 4.5.11 - 264. Output settings and indications.

Name	Range	Step	Default	Description
Scaled output value 1	-10 ⁷ 10 ⁷	0.000 01	0	Scales the measured milliampere signal at Point 2.
Add curvepoint 320	Not usedUsed	-	Not used	Allows the user to create their own curve with up to twenty (20) curve points, instead of using a linear curve between two points.

4.5.12 Logical outputs

Logical outputs are used for sending binary signals out from a logic that has been built in the logic editor. Logical signals can be used for blocking functions, changing setting groups, controlling digital outputs, activating LEDs, etc. The status of logical outputs can also be reported to a SCADA system. 64 logical outputs are available. The figure below presents a logic output example where a signal from the circuit breaker failure protection function controls the digital output relay number 3 ("OUT3") when the circuit breaker's cart status is "In".

CBFP ACT	&	~	Log	jical Outp	ut 25		
Control Settings							
🧭 Controls Enabled 🗎	Setting Groups	🖄 Objects	Cont	trol Funct	ions 👫 D	evice IO	
DeviceI0							
Digital Inputs	Digital Outputs 🥚	mA Outp	uts 🔵 LE	D Setting	js 🔵 De	vice IO M	atrix 🔵 Pro
Control Settings IO Matrix							
Show connected only							
	Inputs		OUT1		OUT2	Ų	OUT3
Logical Output 25 I> START (General) I> TRIP (General)		=					÷
I>> START (General)							
I>> TRIP (General) IO> START			•				
IO> TRIP			- ¢				

Logical output descriptions

Logical outputs can be given a description. The user defined description are displayed in most of the menus:

- logic editor
- matrix
- block settings

- event history
- disturbance recordings
- etc.

Table. 4.5.12 - 265. Logical output user description.

Name	Range	Default	Description
User editable description LO164	131 characters	Logical output 164	Description of the logical output. This description is used in several menu types for easier identification.

NOTICE!

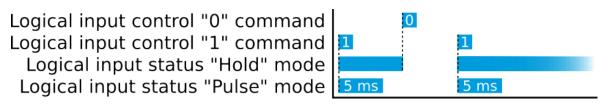
After editing user descriptions the event history will start to use the new description only after resetting the HMI. HMI can be reset from *General* \rightarrow *Device info* \rightarrow *HMI restart*.

Events

The logical outputs (abbreviated "LOGIC" in event block names) generates events from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp. The function's output signals can be used for direct I/O controlling and user logic programming.

Table. 4.5.12 - 266. Event messages.

Event block name	Event names
LOGIC1	Logical out 132 ON
LOGIC1	Logical out 132 OFF
LOGIC3	Logical out 3364 ON
LOGIC3	Logical out 3364 OFF


4.5.13 Logical inputs

Logical inputs are binary signals that a user can control manually to change the behavior of the AQ-200 unit or to give direct control commands. Logical inputs can be controlled with a virtual switch built in the mimic and from a SCADA system. Logical inputs are volatile signals: their status will always return to "0" when the AQ-200 device is rebooted. 32 logical inputs are available.

Logical inputs have two modes available: Hold and Pulse. When a logical input which has been set to "Hold" mode is controlled to "1", the input will switch to status "1" and it stays in that status until it is given a control command to go to status "0" or until the device is rebooted. When a logical input which has been set to "Pulse" mode is controlled to "1", the input will switch to status "1" and return back to "0" after 5 ms.

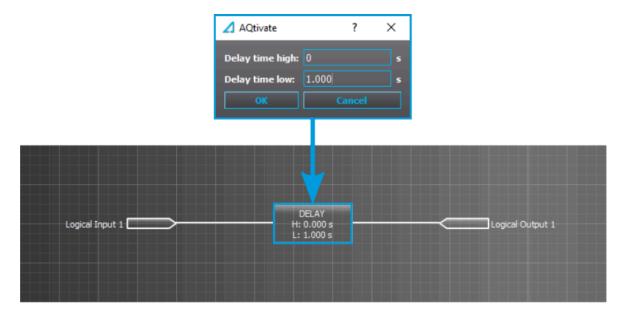

The figure below presents the operation of a logical input in Hold mode and in Pulse mode.

Figure. 4.5.13 - 146. Operation of logical input in "Hold" and "Pulse" modes.

A logical input pulse can also be extended by connecting a DELAY-low gate to a logical output, as has been done in the example figure below.

Figure. 4.5.13 - 147. Extending a logical input pulse.

Logical input control "1" command Logical input status "Pulse" mode Logical output status

Logical input descriptions

Logical inputs can be given a description. The user defined description are displayed in most of the menus:

- logic editor
- matrix
- block settings
- event history
- disturbance recordings
- etc.

Table. 4.5.13 - 267. Logical input user description.

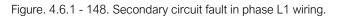
Name	Range	Default	Description
User editable description LI132	131 characters	Logical input 132	Description of the logical input. This description is used in several menu types for easier identification.

NOTICE!

After editing user descriptions the event history will start to use the new description only after resetting the HMI. HMI can be reset from *General* \rightarrow *Device info* \rightarrow *HMI restart*.

Events

The logical outputs (abbreviated "LOGIC" in event block names) generates events from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp. The function's output signals can be used for direct I/O controlling and user logic programming.


Table. 4.5.13 - 268. Event messages.


Event block name	Event names
LOGIC2	Logical in 132 ON
LOGIC2	Logical in 132 OFF

4.6 Monitoring functions

4.6.1 Current transformer supervision

The current transformer supervision function (abbreviated CTS in this document) is used for monitoring the CTs as well as the wirings between the device and the CT inputs for malfunctions and wire breaks. An open CT circuit can generate dangerously high voltages into the CT secondary side, and cause unintended activations of current balance monitoring functions.

The function constantly monitors the instant values and the key calculated magnitudes of the phase currents. Additionally, the residual current circuit can be monitored if the residual current is measured from a dedicated residual current CT. The user can enable and disable the residual circuit monitoring at will.

The following conditions have to met simultaneously for the function alarm to activate:

- None of the three-phase currents exceeds the *Iset high limit* setting.
- At least one of the three-phase currents exceeds the *Iset low limit* setting.
- At least one of the three-phase currents are below the *I_{set} low limit* setting.
- The ratio between the calculated minum and maximum of the three-phase currents is below the *lset ratio* setting.
- The ratio between the negative sequence and the positive sequence exceeds the *I2/I1* ratio setting.
- The calculated difference (IL1+IL2+IL3+I0) exceeds the I_{sum} difference setting (optional).
- The above-mentioned condition is met until the set time delay for alarm.

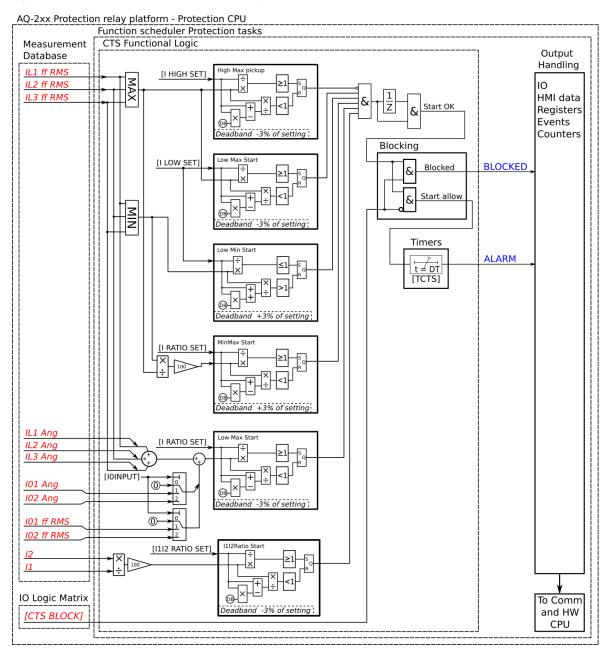


Figure. 4.6.1 - 149. Simplified function block diagram of the CTS function.

Measured input

The function block uses fundamental frequency component of phase current measurement values and residual current measurement values. The function supervises the angle of each current measurement channel. Positive sequence current and negative sequence currents are calculated from the phase currents. The user can select what is used for the residual current measurement: nothing, the I01 channel, or the I02 channel.

Table 4.6.1 - 269	Measured inputs of the CTS function.
10016. 4.0.1 - 203.	

Signal	Description	Time base
IL1RMS	Fundamental frequency component of phase L1 (A) current	5ms
IL2RMS	Fundamental frequency component of phase L2 (B) current	5ms

Signal	Description	Time base
IL3RMS	Fundamental frequency component of phase L3 (C) current	5ms
I01RMS	Fundamental frequency component of residual input I01 5ms	
I ₀₂ RMS	Fundamental frequency component of residual input I02	5ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 4.6.1 - 270. Ge	eneral settings of the function.
------------------------	----------------------------------

Name	Range	Default	Description
CTS LN mode	 On Blocked Test Test/ Blocked Off 	On	Set mode of CTS block. This parameter is visible only when <i>Allow setting of individual LN</i> <i>mode</i> is enabled in <i>General</i> menu.
CTS force status to	NormalAlarmBlocked	Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.
10 input selection	 Not in use I01 I02 	Not in use	Selects the measurement input for the residual current. If the residual current is measured with a separate CT, the residual current circuit can be monitored with the CTS function as well. However, this does not apply to summing connections (Holmgren, etc.). If the phase current CT is summed with I01 or I02, this selection should be set to "Not in use".
10 direction	AddSubtract	Add	Defines the polarity of residual current channel connection.
Compensate natural unbalance	• - • Comp	-	When activated while the line is energized, the currently present calculated residual current is compensated to 0.

Pick-up settings

The I_{set} and IO_{set} setting parameters control the current-dependent pick-up and activation of the current transformer supervision function. They define the minimum and maximum allowed measured current before action from the function. The function constantly calculates the ratio between the setting values and the measured magnitude (I_m) for each of the three phases and for the selected residual current input. The reset ratio of 97 % and 103% are built into the function and is always relative to the I_{set} value. The setting value is common for all measured amplitudes, and when the I_m exceeds the I_{set} value (in single, dual or all currents) it triggers the pick-up operation of the function.

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

Table. 4.6.1 - 271. Pick-up settings.

Name	Range	Step	Default	Description
I _{set} high limit	0.0140.00×I _n	0.01×In	1.20×I _n	Determines the pick-up threshold for phase current measurement. This setting limit defines the upper limit for the phase current's pick-up element. If this condition is met, it is considered as fault and the function is not activated.
I _{set} Iow limit	0.0140.00×In	0.01×In	0.10×In	Determines the pick-up threshold for phase current measurement. This setting limit defines the lower limit for the phase current's pick-up element. This condition has to be met for the function to activate.
I _{set} ratio	0.01100.00%	0.01%	10.00%	Determines the pick-up ratio threshold between the minimum and maximum values of the phase current. This condition has to be met for the function to activate.
I2/I1 ratio	0.01100.00%	0.01%	49.00%	Determines the pick-up ratio threshold for the negative and positive sequence currents calculated from the phase currents. This condition has to be met for the function to activate. The ratio is 50 % for a full single-phasing fault (i.e. when one of the phases is lost entirely). Setting this at 49 % allows a current of $0.01 \times I_n$ to flow in one phase, wile the other two are at nominal current.
I _{sum} difference	0.0140.00×I _n	0.01×I _n	0.10×I _n	Determines the pick-up ratio threshold for the calculated residual phase current and the measured residual current. If the measurement circuit is healthy, the sum of these two currents should be 0.
Time delay for alarm	0.0001800.000s	0.005s	0.5s	Determines the delay between the activation of the function and the alarm.

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Table. 4.6.1 - 272. Information displayed by the function.

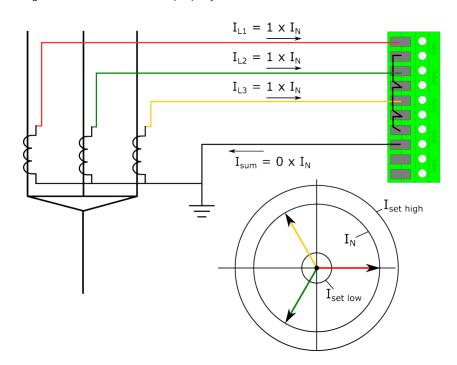
Name Range		Step	Description	
CTS LN behaviour CTS LN behaviour		_	Displays the mode of CTS block. This parameter is visible only when <i>Allow setting of individual</i> <i>LN mode</i> is enabled in <i>General</i> menu.	
Uncompensated residual unbalance Pri	NormalStartTripBlocked	-	Displays the natural unbalance of current after compensating it with <i>Compensate natural unbalance</i> parameter.	

Name	Range	Step	Description
Natural unbalance ang	-360.00360.00 deg	0.01 deg	Displays the natural unbalance of angle after compensating it with <i>Compensate natural unbalance</i> parameter.
Measured current difference Isum, I0	0.0050.00 xln	0.01 xln	Current difference between summed phases and residual current.
Measured angle difference Isum, I0	-360360 deg	0.01 deg	Angle difference between summed phases and residual current.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.


The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics

This function supports definite time delay (DT). For detailed information on this delay type please refer to the chapter "<u>General properties of a protection function</u>" and its section "Operating time characteristics for trip and reset".

Typical cases of current transformer supervision

The following nine examples present some typical cases of the current transformer supervision and their setting effects.

AQ-C255 Instruction manual

Version: 2.12

Settings:

$$\begin{split} I_{set} & \text{High limit} = 1.20 \times I_{\text{N}} \\ I_{set} & \text{Low limit} = 0.10 \times I_{\text{N}} \\ I_{set} & \text{ratio} = 10.00 \ \% \\ I1/I2 & \text{ratio} = 49.00 \ \% \\ I_0 & \text{input} = \text{Not in use} \end{split}$$


Measurements:

$$\begin{split} I_{min} &= 1 \times I_{N} \\ I_{max} &= 1 \times I_{N} \\ I1 &= 1 \times I_{N} \\ I2 &= 0 \times I_{N} \\ I_{min}/I_{max} &= 1 \\ I2/I1 &= 0\% \end{split}$$

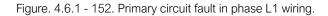
CTS conditions:

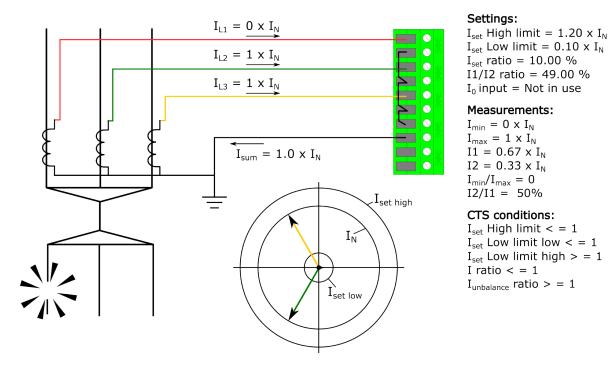
$$\begin{split} I_{set} & \text{High limit} < = 1\\ I_{set} & \text{Low limit low} < = 0\\ I_{set} & \text{Low limit high} > = 1\\ I & \text{ratio} < = 0\\ I_{unbalance} & \text{ratio} > = 0 \end{split}$$

Figure. 4.6.1 - 151. Secondary circuit fault in phase L1 wiring.

Settings:

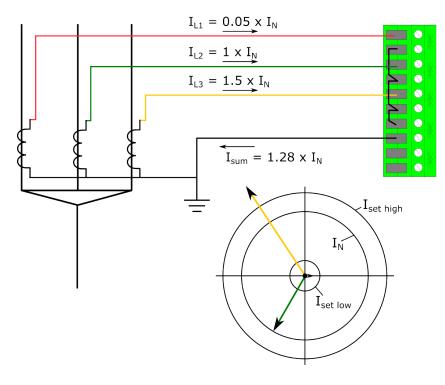
$$\begin{split} I_{set} & \text{High limit} = 1.20 \text{ x } I_{N} \\ I_{set} & \text{Low limit} = 0.10 \text{ x } I_{N} \\ I_{set} & \text{ratio} = 10.00 \ \% \\ I1/I2 & \text{ratio} = 49.00 \ \% \\ I_{0} & \text{input} = \text{Not in use} \end{split}$$


Measurements:


$$\begin{split} I_{min} &= 0 \times I_{N} \\ I_{max} &= 1 \times I_{N} \\ I1 &= 0.67 \times I_{N} \\ I2 &= 0.33 \times I_{N} \\ I_{min}/I_{max} &= 0 \\ I2/I1 &= 50\% \end{split}$$

CTS conditions:

$$\begin{split} &I_{set} \text{ High limit } < = 1 \\ &I_{set} \text{ Low limit low } < = 1 \\ &I_{set} \text{ Low limit high } > = 1 \\ &I \text{ ratio } < = 1 \\ &I_{unbalance} \text{ ratio } > = 1 \end{split}$$


When a fault is detected and all conditions are met, the CTS timer starts counting. If the situation continues until the set time has passed, the function issues an alarm.

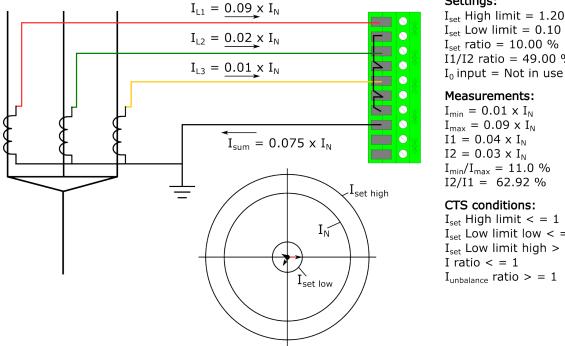
In this example, distinguishing between a primary fault and a secondary fault is impossible. However, the situation meets the function's activation conditions, and if this state (secondary circuit fault) continues until the set time has passed, the function issues an alarm. This means that the function supervises both the primary and the secondary circuit.

Figure. 4.6.1 - 153. No wiring fault but heavy unbalance.

Settings:

$$\begin{split} I_{set} & \text{High limit} = 1.20 \times I_{\text{N}} \\ I_{set} & \text{Low limit} = 0.10 \times I_{\text{N}} \\ I_{set} & \text{ratio} = 10.00 \ \% \\ I1/I2 & \text{ratio} = 49.00 \ \% \\ I_0 & \text{input} = \text{Not in use} \end{split}$$

Measurements:


 $\begin{array}{l} I_{min} = 0.05 \times I_N \\ I_{max} = 1.50 \times I_N \\ I1 = 0.85 \times I_N \\ I2 = 0.43 \times I_N \\ I_{min}/I_{max} = 0.7 \ \% \\ I2/I1 = \ 50.03 \ \% \end{array}$

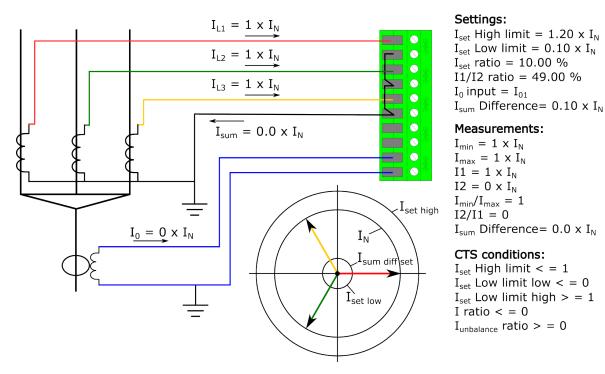
CTS conditions:

$$\begin{split} I_{set} & \text{High limit} < = 0\\ I_{set} & \text{Low limit low} < = 1\\ I_{set} & \text{Low limit high} > = 1\\ I & \text{ratio} < = 1\\ I_{unbalance} & \text{ratio} > = 1 \end{split}$$

If any of the phases exceed the *l_{set} high limit* setting, the operation of the function is not activated. This behavior is applied to short-circuits and earth faults even when the fault current exceeds the *l_{set} high limit* setting.

Figure. 4.6.1 - 154. Low current and heavy unbalance.

Settings:


 I_{set} High limit = 1.20 x I_{N} I_{set} Low limit = 0.10 x I_N I1/I2 ratio = 49.00 %

 I_{set} Low limit low < = 1 I_{set} Low limit high > = 0

If all of the measured phase magnitudes are below the Iset low limit setting, the function is not activated even when the other conditions (inc. the unbalance condition) are met.

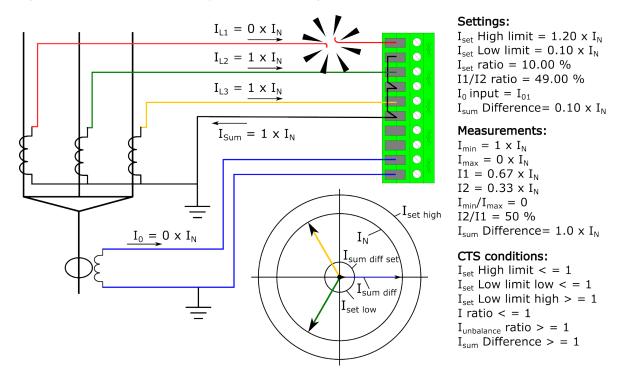

If the Iset high limit and Iset low limit setting parameters are adjusted according to the application's normal behavior, the operation of the function can be set to be very sensitive for broken circuit and conductor faults.

Figure. 4.6.1 - 155. Normal situation, residual current also measured.

When the residual condition is added with the "IO input selection", the sum of the current and the residual current are compared against each other to verify the wiring condition.

When phase current wire is broken all of the conditions are met in the CTS and alarm shall be issued in case if the situation continues until the set alarming time is met.

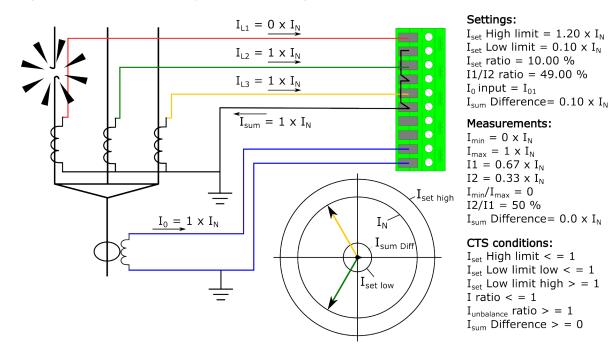
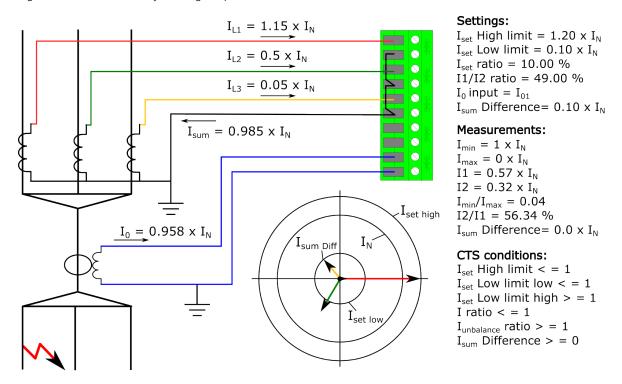



Figure. 4.6.1 - 157. Broken primary phase current wiring.

In this example, all other condition are met except the residual difference. That is now $0 \times I_n$, which indicates a primary side fault.

Figure. 4.6.1 - 158. Primary side high-impedance earth fault.

In this example there is a high-impedance earth fault. It does not activate the function, if the measurement conditions are met, while the calculated and measured residual current difference does not reach the limit. The *I_{sum} difference* setting should be set according to the application in order to reach maximum security and maximum sensitivity for the network earthing.

Events and registers

The current transformer supervision function (abbreviated "CTS" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a resettable cumulative counter for the CTS ALARM and BLOCKED events.

Event block name	Event names
CTS1	Alarm ON
CTS1	Alarm OFF
CTS1	Block ON
CTS1	Block OFF

Table. 4.6.1 - 273. Event messages.

The function registers its operation into the last twelve (12) time-stamped registers; this information is available for all provided instances separately. The register of the function records the ON event process data for ACTIVATED, BLOCKED, etc. The table below presents the structure of the function's register content.

Table. 4.6.1 - 274. Register content.

Register	Description			
Date and time	dd.mm.yyyy hh:mm:ss.mss			
Event	Event name			
Trigger currents	The phase currents (L1, L2 & L3), the residual currents (I01 & I02), and the sequence currents (I1 & I2) on trigger time.			
Time to CTSact	Time remaining before alarm activation.			
Fault type	The status code of the monitored current.			
Setting group in use	Setting group 18 active			

4.6.2 Voltage transformer supervision (60)

Voltage transformer supervision is used to detect errors in the secondary circuit of the voltage transformer wiring and during fuse failure. This signal is mostly used as an alarming function or to disable functions that require adequate voltage measurement.

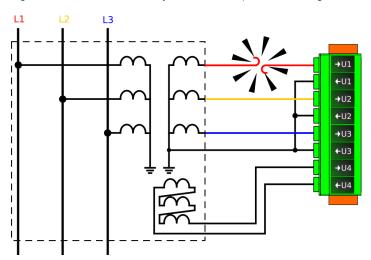
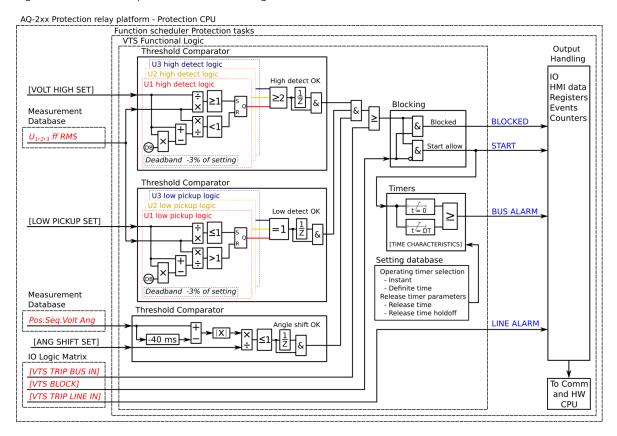



Figure. 4.6.2 - 159. Secondary circuit fault in phase L1 wiring.

Figure. 4.6.2 - 160. Simplified function block diagram of the VTS function.

Measured input

The function block uses fundamental frequency component of voltage measurement channels. The function uses calculated positive, negative and zero sequence voltages. The function also monitors the angle of each voltage channel.

Table. 4.6.2 - 275. Measurement inputs of the voltage transformer supervision function.

Signal	Description	Time base
U1RMS	Fundamental frequency component of U1/V voltage measurement	5ms
U ₂ RMS	Fundamental frequency component of U ₂ /V voltage measurement	5ms
U ₃ RMS	Fundamental frequency component of U ₃ /V voltage measurement	5ms
U ₄ RMS	Fundamental frequency component of U ₄ /V voltage measurement	5ms

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 4.6.2 - 276.	General settings of th	ne function.

Name	Range Default		Description	
VTS LN mode	 On Blocked Test Test/ Blocked Off 	On	Set mode of VTS block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.	
VTS force status to	 Normal Start VTLinefail VTBusfail Blocked 	Normal	Force the status of the function. Visible only when <i>Enable stage forcing</i> parameter is enabled in <i>General</i> menu.	

Pick-up settings

The *Voltage low pick-up* and *Voltage high detect* setting parameters control the voltage-dependent pick-up and activation of the voltage transformer supervision function. The function's pick-up activates, if at least one of the three voltages is under the set *Voltage low pick-up* value, or if at least two of the three voltages exceed the set *Voltage high detect* value. The function constantly calculates the ratio between the setting values and the measured magnitude for each of the three phases.

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

Name	Range	Step	Default	Description
Voltage Iow pickup	0.050.50×Un	0.01×U _n	0.05×U _n	If one the measured voltages is below low pickup value
Voltage high detect	0.011.10×U _n	0.01×U _n	0.80×U _n	and two of the measured voltages exceed high detect value the function's pick-up activates.
Angle shift limit	2.0090.00deg	0.10deg	5.00deg	If the difference between the present angle and the angle 40 ms before is below the set value, the function's pick-up is blocked.
Bus fuse fail check	• No • Yes	-	Yes	Selects whether or not the state of the bus fuse is supervised. The supervised signal is determined the "VTS MCB Trip bus" setting ($I/O \rightarrow$ Fuse failure inputs).
Line fuse fail check	• No • Yes	-	Yes	Selects whether or not the state of the line fuse is supervised. The supervised signal is determined by the "VTS MCB Trip line" setting ($I/O \rightarrow$ Fuse failure inputs).

Table. 4.6.2 - 277. Pick-up settings.

The voltage transformer supervision can also report several different states of the measured voltage. These can be seen in the function's *INFO* menu.

Name	Description			
Bus dead	No voltages.			
Bus Live VTS Ok	All of the voltages are within the set limits.			
Bus Live VTS Ok SEQ Rev	All of the voltages are within the set limits BUT the voltages are in a reversed sequence.			
Bus Live VTS Ok SEQ Undef	Voltages are within the set limits BUT the sequence cannot be defined.			
Bus Live VTS problem	Any of the VTS pick-up conditions are met.			

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Table. 4.6.2 - 278.	Information	displayed	by the function.
10010. 1.0.2 210.	mormation	alopiayoa	by the fullotion.

Name	Range	Step	Description
VTS LN behaviour			Displays the mode of VTS block. This parameter is visible only when <i>Allow setting of individual</i> <i>LN mode</i> is enabled in <i>General</i> menu.
VTS condition	 Normal Start VTLinefail VTBusfail Blocked 	-	Displays status of the monitoring function.
Bus voltages	 Bus dead Bus Live VTS Ok SEQ Ok Bus Live VTS Ok SEQ Rev Bus Live VTS Ok SEQ Undef Bus Live VTS problem 	-	Displays the status of bus voltages.
Expected operating time	0.0001800.000s	0.005s	Displays the expected operating time when a fault occurs.
Time remaining to trip	-1800.0001800.000s	0.005s	When the function has detected a fault and counts down time towards a operation, this displays how much time is left before operation occurs.

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for activation

This function supports definite time delay (DT). For detailed information on these delay types please refer to the chapter "<u>General properties of a protection function</u>" and its section "<u>Operating time</u> <u>characteristics for trip and reset</u>".

Events and registers

The voltage transformer supervision function (abbreviated "VTS" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a resettable cumulative counter for the START, ALARM BUS, ALARM LINE and BLOCKED events.

Event block name	Event names
VTS1	Bus VT fail Start ON
VTS1	Bus VT fail Start OFF
VTS1	Bus VT fail Trip ON
VTS1	Bus VT fail Trip OFF
VTS1	Bus VT fail Block ON
VTS1	Bus VT fail Block OFF
VTS1	Line VT fail ON
VTS1	Line VT fail OFF
VTS1	Bus Fuse fail ON
VTS1	Bus Fuse fail OFF
VTS1	Line Fuse fail ON

Table. 4.6.2 - 279. Event messages.

Event block name	Event names
VTS1	Line Fuse fail OFF

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for ACTIVATED, BLOCKED, etc. The table below presents the structure of the function's register content.

Table. 4.6.2 - 280. Register content.

Register	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
Volt 1, 2, 3, 4 status	No voltageVoltage OKLow voltage
System status	 Bus dead Bus live, VTS OK, Seq. OK Bus live, VTS OK, Seq. reversed Bus live, VTS OK, Seq. undefined Bus live, VTS fault
Input A, B, C, D angle diff	0.00360.00deg
Trip time remaining	Time remaining to alarm 01800s
Setting group in use	Setting group 18 active

4.6.3 Current total harmonic distortion (THD)

The total harmonic distortion (THD) function is used for monitoring the content of the current harmonic. The THD is a measurement of the harmonic distortion present, and it is defined as the ratio between the sum of all harmonic components' powers and the power of the fundamental frequency (RMS).

Harmonics can be caused by different sources in electric networks such as electric machine drives, thyristor controls, etc. The function's monitoring of the currents can be used to alarm of the harmonic content rising too high; this can occur when there is an electric quality requirement in the protected unit, or when the harmonics generated by the process need to be monitored.

The function constantly measures the phase and residual current magnitudes as well as the harmonic content of the monitored signals up to the 31st harmonic component. When the function is activated, the measurements are also available for the mimic and the measurement views in the HMI carousel. The user can also set the alarming limits for each measured channel if the application so requires.

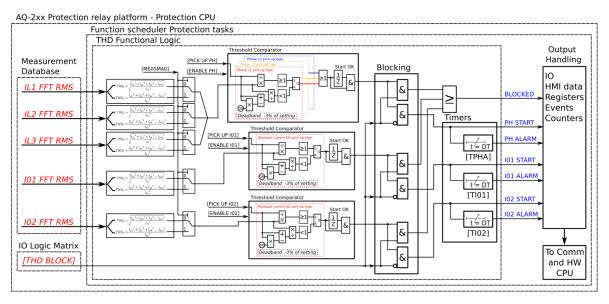
The monitoring of the measured signals can be selected to be based either on an amplitude ratio or on the above-mentioned power ratio. The difference is in the calculation formula (as shown below):

4 Functions

Version: 2.12

Figure. 4.6.3 - 161. THD calculation formulas.

$$THD_{P} = \frac{I_{x2}^{2} + I_{x3}^{2} + I_{x4}^{2} \dots I_{x31}^{2}}{I_{x1}^{2}}$$
, where


$$I = measured current, x = measurement input, n = harmonic number$$

$$THD_{A} = \sqrt{\frac{I_{x2}^{2} + I_{x3}^{2} + I_{x4}^{2} \dots I_{x31}^{2}}{I_{x1}^{2}}}$$
, where

$$I = measured current, x = measured current, x = measured current, n = harmonic number$$

While both of these formulas exist, the power ratio (*THDP*) is recognized by the IEEE, and the amplitude ratio (*THDA*) is recognized by the IEC.

Measured input

The function block uses phase and residual current measurement channels. The function always uses FFT measurement of the whole harmonic specter of 32 components from each measured current channel. From these measurements the function calculates either the amplitude ratio or the power ratio.

Table. 4.6.3 - 281. Measurement inputs of the total harmonic distortion monitor function.

Signal	Description	Time base
IL1FFT	FFT measurement of phase L1 (A) current	5ms
IL2FFT	FFT measurement of phase L2 (B) current	5ms
IL3FFT	FFT measurement of phase L3 (C) current	5ms
I01FFT	FFT measurement of residual I01 current	5ms
I ₀₂ FFT	FFT measurement of residual I02 current	5ms

The selection of the calculation method is made with a setting parameter (common for all measurement channels).

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 4.6.3 - 282. General settings.

Name	Range	Default	Description
THD> LN mode	 On Blocked Test Test/ Blocked Off 	On	Set mode of THD block. This parameter is visible only when <i>Allow setting of individual LN</i> <i>mode</i> is enabled in <i>General</i> menu.
Measurement magnitude	 Amplitude Power	Amplitude	Defines which available measured magnitude the function uses.

Pick-up settings

The *PhaseTHD*, *I01THD* and *I02THD* setting parameters control the the pick-up and activation of the function. They define the maximum allowed measured current THD before action from the function. Before the function activates alarm signals, their corresponding pick-up elements need to be activated with the setting parameters *Enable phase THD alarm*, *Enable I01 THD alarm* and *Enable I02 THD alarm*. The function constantly calculates the ratio between the setting values and the calculated THD for each of the three phases. The reset ratio of 97 % is built into the function and is always relative to the setting value. The setting value is common for all measured phases. When the calculated THD exceeds the pick-up value (in single, dual or all phases), it triggers the pick-up operation of the function.

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

Name	Range	Step	Default	Description
Enable phase THD alarm	EnabledDisabled	-	Enabled	Enables and disables the THD alarm function from phase currents.
Enable I01 THD alarm	EnabledDisabled	-	Enabled	Enables and disables the THD alarm function from residual current input I01.
Enable 102 THD alarm	EnabledDisabled	-	Enabled	Enables and disables the THD alarm function from residual current input I02.

Table. 4.6.3 - 283. Pick-up settings.

Name	Range	Step	Default	Description
Phase THD pick-up	0.10100.00%	0.01%	10.00%	The pick-up setting for the THD alarm element from the phase currents. At least one of the phases' measured THD value has to exceed this setting in order for the alarm signal to activate.
I01 THD pick-up	0.10100.00%	0.01%	10.00%	The pick-up setting for the THD alarm element from the residual current I01. The measured THD value has to exceed this setting in order for the alarm signal to activate.
I02 THD pick-up	0.10100.00%	0.01%	10.00%	The pick-up setting for the THD alarm element from the residual current I02. The measured THD value has to exceed this setting in order for the alarm signal to activate.

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Table. 4.6.3 - 284. Information displayed by the function.

Name	Range	Description	
THD> LN behaviour	 On Blocked Test Test/ Blocked Off 	Displays the mode of THD block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.	
THD condition	NormalStartAlarmBlocked	Displays status of the monitoring function.	

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for activation and reset

This function supports definite time delay (DT). The following table presents the setting parameters for the function's time characteristics.

Table. 4.6.3 - 285. Settings for operating time characteristics.

Name	Range	Step	Default	Description
Phase THD alarm delay	0.0001800.000s	0.005s	10.000s	Defines the delay for the alarm timer from the phase currents' measured THD.
l01 THD alarm delay	0.0001800.000s	0.005s	10.000s	Defines the delay for the alarm timer from the residual current I01's measured THD.
l02 THD alarm delay	0.0001800.000s	0.005s	10.000s	Defines the delay for the alarm timer from the residual current I02's measured THD.

Events and registers

The total harmonic distortion monitor function (abbreviated "THD" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a resettable cumulative counter for the START, ALARM and BLOCKED events.

Event block name	Event names
THD1	THD Start Phase ON
THD1	THD Start Phase OFF
THD1	THD Start I01 ON
THD1	THD Start I01 OFF
THD1	THD Start I02 ON
THD1	THD Start I02 OFF
THD1	THD Alarm Phase ON
THD1	THD Alarm Phase OFF
THD1	THD Alarm I01 ON
THD1	THD Alarm I01 OFF
THD1	THD Alarm I02 ON
THD1	THD Alarm I02 OFF
THD1	Blocked ON
THD1	Blocked OFF

Table. 4.6.3 - 286. Event messages.

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, ALARM and BLOCKED. The table below presents the structure of the function's register content.

Table. 4.6.3 - 287. Register content.

Register	Description
Date and time	dd.mm.yyyy hh:mm:ss.mss
Event	Event name
L1h, L2h, L3h Fault THD	Start/Alarm THD of each phase.
Setting group in use	Setting group 18 active.

4.6.4 Voltage total harmonic distortion (THD)

The voltage total harmonic distortion (THD) function is used for monitoring the content of the voltage harmonic. The THD is a measurement of the harmonic distortion present, and it is defined as the ratio between the sum of all harmonic components' powers and the power of the fundamental frequency (RMS).

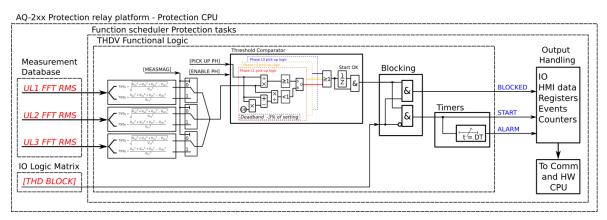
Harmonics can be caused by different sources in electric networks such as electric machine drives, thyristor controls, etc. The function's monitoring of the voltage can be used to alarm of the harmonic content rising too high; this can occur when there is an electric quality requirement in the protected unit, or when the harmonics generated by the process need to be monitored.

The function constantly measures the phase voltage magnitudes as well as the harmonic content of the monitored signals up to the 31st harmonic component. The user can set the alarming limits if the application so requires.

The monitoring of the measured signals can be selected to be based either on an amplitude ratio or on the above-mentioned power ratio. The difference is in the calculation formula (as shown below):

Figure. 4.6.4 - 163. THD calculation formulas.

$$THD_P = \frac{U_{x2}^2 + U_{x3}^2 + U_{x4}^2 \dots U_{x31}^2}{U_{x1}^2}$$


, where U = measured voltage, x= measurement input, n = harmonic number

$$THD_{A} = \sqrt{\frac{U_{x2}^{2} + U_{x3}^{2} + U_{x4}^{2} \dots U_{x31}^{2}}{U_{x1}^{2}}}$$

, where U = measured voltage, x= measurement input, n = harmonic number

While both of these formulas exist, the power ratio (THD_P) is recognized by the IEEE, and the amplitude ratio (THD_A) is recognized by the IEC.

Measured input

The function block uses analog voltage measurement values. The function always uses FFT measurement of the whole harmonic specter of 32 components from each measured voltage channel. From these measurements the function calculates either the amplitude ratio or the power ratio.

Table. 4.6.4 - 288. Measurement inputs of the total harmonic distortion monitor function.

Signal	Description	Time base
U ₁ FFT	FFT measurement of U_1N voltage channel	5ms
U ₂ FFT	FFT measurement of U_2N voltage channel	5ms
U ₃ FFT	FFT measurement of U ₃ /V voltage channel	5ms

The selection of the calculation method is made with a setting parameter (common for all measurement channels).

General settings

The following general settings define the general behavior of the function. These settings are static i.e. it is not possible to change them by editing the setting group.

Table. 4.6.4 - 289. General settings.

Name	Range	Default	Description
THDV> LN mode	 On Blocked Test Test/ Blocked Off 	On	Set mode of THDV block. This parameter is visible only when <i>Allow setting of individual LN</i> <i>mode</i> is enabled in <i>General</i> menu.
Measurement magnitude	 Amplitude Power	Amplitude	Defines which available measured magnitude the function uses.

Pick-up settings

The THDV pick-up *s*etting parameter controls the the pick-up and activation of the function. They define the maximum allowed measured voltage THD before action from the function. Before the function activates alarm signals, their corresponding pick-up elements need to be activated with the setting parameter *Enable THD alarm*. The function constantly calculates the ratio between the setting values and the calculated voltage THD. The reset ratio of 97 % is built into the function and is always relative to the setting value. The setting value is common for all measured phases. When the calculated THD exceeds the pick-up value (in single, dual or all phases), it triggers the pick-up operation of the function.

Setting group selection controls the operating characteristics of the function, i.e. the user or userdefined logic can change function parameters while the function is running.

Name	Range	Step	Default	Description	
Enable THDV alarm	EnabledDisabled	-	Enabled	Enables and disables the THD alarm function.	
THDV pick- up	0.10100.00%	0.01%	10.00%	The pick-up setting for the THD alarm element from the phase voltages. At least one of the phases' measured THD value has exceed this setting in order for the alarm signal to activate.	

Tahlo	4.6.4 - 290) Pick-up	sottings
lable.	4.0.4 - 29	J. ГІСК-йр	settings.

Read-only parameters

The function's *Info* page displays useful, real-time information on the state of the protection function. It is accessed either through the device's HMI display, or through the setting tool software when it is connected to the device and its Live Edit mode is active.

Table. 4.6.4 - 291. Information displayed by the function.

Name	Range	Description	
THDV> LN behaviour	 On Blocked Test Test/ Blocked Off 	Displays the mode of THDV block. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.	
THDV condition	NormalStartAlarmBlocked	Displays status of the monitoring function.	

Function blocking

The block signal is checked in the beginning of each program cycle. The blocking signal is received from the blocking matrix in the function's dedicated input. If the blocking signal is not activated when the pick-up element activates, a START signal is generated and the function proceeds to the time characteristics calculation.

If the blocking signal is active when the pick-up element activates, a BLOCKED signal is generated and the function does not process the situation further. If the START function has been activated before the blocking signal, it resets and the release time characteristics are processed similarly to when the pick-up signal is reset.

The variables the user can set are binary signals from the system. The blocking signal needs to reach the device minimum of 5 ms before the set operating delay has passed in order for the blocking to activate in time.

Operating time characteristics for activation and reset

This function supports definite time delay (DT). The following table presents the setting parameters for the function's time characteristics.

Table. 4.6.4 - 292. Settings for operating time characteristics.

Name	Range	Step	Default	Description
THDV alarm delay	0.0001800.000s	0.005s	10.000s	Defines the delay for the alarm timer from the phase voltages' measured THD.

Events and registers

The voltage total harmonic distortion monitor function (abbreviated "THDV" in event block names) generates events and registers from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

The function's outputs can be used for direct I/O controlling and user logic programming. The function also provides a resettable cumulative counter for the START, ALARM and BLOCKED events.

Event block name	Event names
THDV1	Voltage THD Start ON
THDV1	Voltage THD Start OFF
THDV1	Voltage THD Alarm ON
THDV1	Voltage THD Alarm OFF
THDV1	Voltage Blocked ON
THDV1	Voltage Blocked OFF

Table. 4.6.4 - 293. Event messages.

The function registers its operation into the last twelve (12) time-stamped registers. The register of the function records the ON event process data for START, ALARM and BLOCKED. The table below presents the structure of the function's register content.

Table. 4.6.4 - 294. Register content.

Register	Description	
Date and time	dd.mm.yyyy hh:mm:ss.mss	

Register	Description
Event	Event name
UL1, UL2, UL3 THDV	Start/Alarm Voltage THD of each phase.
Setting group in use	Setting group 18 active.

4.6.5 Disturbance recorder (DR)

The disturbance recorder is a high-capacity (64 MB permanent flash memory) and fully digital recorder integrated to the protection relay. The maximum sample rate of the recorder's analog channels is 64 samples per cycle. The recorder also supports 95 digital channels simultaneously with the twenty (20) measured analog channels. Maximum capacity of recordings is 100.

The recorder provides a great tool to analyze the performance of the power system during network disturbance situations. The recorder's output is in general COMTRADE format and it is compatible with most viewers and injection devices. The files are based on the IEEE standard C37.111-1999. Captured recordings can be injected as playback with secondary testing tools that support the COMTRADE file format. Playback of files might help to analyze the fault, or can be simply used for educational purposes.

Analog and digital recording channels

Up to 20 analog recording channels and 95 digital channels are supported.

Signal	Description
IL1	Phase current I _{L1}
IL2	Phase current I _{L2}
IL3	Phase current IL3
101c	Residual current I ₀₁ coarse*
101f	Residual current I ₀₁ fine*
102c	Residual current I ₀₂ coarse*
102f	Residual current I ₀₂ fine*
IL1"	Phase current I _{L1} (CT card 2)
IL2"	Phase current I _{L2} (CT card 2)
IL3"	Phase current I _{L3} (CT card 2)
l01"c	Residual current I ₀₁ coarse* (CT card 2)
101"f	Residual current I ₀₁ fine* (CT card 2)
102"c	Residual current I ₀₂ coarse* (CT card 2)
102"f	Residual current I ₀₂ fine* (CT card 2)

Table. 4.6.5 - 295. Analog recording channels.

Signal	Description
U1(2)VT1	Line-to-neutral U_{L1} or line-to-line voltage U_{L12} (VT card 1)
U2(3)VT1	Line-to-neutral U_{L2} or line-to-line voltage U_{L23} (VT card 1)
U3(1)VT1	Line-to-neutral U_{L3} or line-to-line voltage U_{L31} (VT card 1)
U0(ss)VT1	Zero sequence voltage U_0 or synchrocheck voltage U_{SS} (VT card 1)
F tracked 1	Tracked frequency of reference 1
F tracked 2	Tracked frequency of reference 2
F tracked 3	Tracked frequency of reference 3
ISup	Current measurement module voltage supply supervision (CT card 1)
ISup"	Current measurement module voltage supply supervision (CT card 2)
USup	Voltage measurement module voltage supply supervision (VT card 1)
IL1'''	Phase current IL1 (CT card 3)
IL2'''	Phase current I _{L2} (CT card 3)
IL3'''	Phase current IL3 (CT card 3)
l01'''c	Residual current I ₀₁ coarse* (CT card 3)
101'''f	Residual current I ₀₁ fine* (CT card 3)
102'''c	Residual current I ₀₂ coarse* (CT card 3)
102'''f	Residual current I ₀₂ fine* (CT card 3)
ISup_3	Current measurement module voltage supply supervision (CT card 3)
UL1(2)VT2	Line-to-neutral U_{L1} or line-to-line voltage U_{L12} (VT card 2)
UL2(3)VT2	Line-to-neutral UL2 or line-to-line voltage UL23 (VT card 2)
UL3(1)VT2	Line-to-neutral U _{L3} or line-to-line voltage U _{L31} (VT card 2)
U0(SS)VT2	Zero sequence voltage U_0 or synchrocheck voltage U_{SS} (VT card 2)
USup_2	Voltage measurement module voltage supply supervision (VT card 2)

*NOTE: There are two signals for each residual current channel in the disturbance recorder: coarse and fine. A coarse signal is capable of sampling in the full range of the current channel but suffers a loss of accuracy at very low currents. A fine signal is capable of sampling at very low currents and with high accuracy but cuts off at higher currents. Table below lists performance of both channels with fine and coarse gain.

Table. 4.6.5 - 296. Residual current channel performance with coarse or residual gain.

Channel	Coarse gain range	Fine gain range	Fine gain peak
101	0150 A	010 A	15 A

Channel	Coarse gain range	Fine gain range	Fine gain peak
102	075 A	05 A	8 A

Table. 4.6.5 - 297. Digital recording channels – Measurements.

Signal	Description	Signal	Description	
Currents				
Pri.Pha.curr.ILx	Primary phase current ILx (IL1, IL2, IL3)	Pha.curr.ILx TRMS Pri	Primary phase current TRMS (IL1, IL2, IL3)	
Pha.angle ILx	Phase angle ILx (IL1, IL2, IL3)	Pos./Neg./Zero seq.curr.	Positive/Negative/Zero sequence current	
Pha.curr.ILx	Phase current ILx (IL1, IL2, IL3)	Sec.Pos./Neg./Zero seq.curr.	Secondary positive/negative/zero sequence current	
Sec.Pha.curr.ILx	Secondary phase current ILx (IL1, IL2, IL3)	Pri.Pos./Neg./Zero seq.curr.	Primary positive/negative/zero sequence current	
Pri.Res.curr.I0x	Primary residual current I0x (I01, I02)	Pos./Neg./Zero seq.curr.angle	Positive/Negative/Zero sequence current angle	
Res.curr.angle I0x	Residual current angle I0x (I01, I02)	Res.curr.I0x TRMS	Residual current TRMS I0x (I01, I02)	
Res.curr.I0x	Residual current I0x (I01, I02)	Res.curr.I0x TRMS Sec	Secondary residual current TRMS I0x (I01, I02)	
Sec.Res.curr.I0x	Secondary residual current I0x (I01, I02)	Res.curr.I0x TRMS Pri	Primary residual current TRMS I0x (I01, I02)	
Pri.cal.l0	Primary calculated I0	Pha.Lx ampl. THD	Phase Lx amplitude THD (L1, L2, L3)	
Sec.calc.I0	Secondary calculated	Pha.Lx pow. THD	Phase Lx power THD (L1, L2, L3)	
calc.I0	Calculated I0	Res.I0x ampl. THD	Residual I0x amplitude THD (I01, I02)	
calc.I0 Pha.angle	Calculated I0 phase angle	Res.I0x pow. THD	Residual I0x power THD (I01, I02)	
Pha.curr.ILx TRMS	Phase current TRMS ILx (IL1, IL2, IL3)	P-P curr.ILx	Phase-to-phase current ILx (IL1, IL2, IL3)	
Pha.curr.ILx TRMS Sec	Secondary phase current TRMS (IL1, IL2, IL3)	P-P curr.I0x	Phase-to-phase current I0x (I01, I02)	
Voltages				
Ux voltage in per-unit values (U1, U2, U3, U4)		System volt ULxx mag	Magnitude of the system voltage ULxx (UL12, UL23, UL31)	

Signal	Description	Signal	Description
Ux Volt pri	Primary Ux voltage (U1, U2, U3, U4)	System volt ULxx mag(kV)	Magnitude of the system voltage ULxx in kilovolts (UL12, UL23, UL31)
Ux Volt sec	Secondary Ux voltage (U1, U2, U3, U4)	System volt ULxx ang	Angle of the system voltage ULxx (UL12, UL23, UL31)
Ux Volt TRMS p.u.	Ux voltage TRMS in per-unit values (U1, U2, U3, U4)	System volt ULx mag	Magnitude of the system voltage ULx (U1, U2, U3, U4)
Ux Volt TRMS pri	Primary Ux voltage TRMS (U1, U2, U3, U4)	System volt ULx mag(kV)	Magnitude of the system voltage ULx in kilovolts (U1, U2, U3, U4)
Ux Volt TRMS sec	Secondary Ux voltage TRMS (U1, U2, U3, U4)	System volt ULx ang	Angle of the system voltage ULx (U1, U2, U3, U4)
Pos/Neg./Zero seq.Volt.p.u.	Positive/Negative/ Zero sequence voltage in per-unit values	System volt U0 mag	Magnitude of the system voltage U0
Pos./Neg./Zero seq.Volt.pri	Primary positive/ negative/ zero sequence voltage	System volt U0 mag(kV)	Magnitude of the system voltage U0 in kilovolts
Pos./Neg./Zero seq.Volt.sec	Secondary positive/ negative/zero sequence voltage	System volt U0 mag(%)	Magnitude of the system voltage U0 in percentages
Ux Angle	Ux angle (U1, U2, U3, U4)	System volt U0 ang	Angle of the system voltage U0
Pos./Neg./Zero Seq volt.Angle	Positive/Negative/Zero sequence voltage angle	Ux Angle difference	Ux angle difference (U1, U2, U3)
Resistive and reactive currents			
ILx Resistive Current p.u.	ILx resistive current in per-unit values (IL1, IL2, IL3)	Pos.seq. Resistive Current Pri.	Primary positive sequence resistive current
ILx Reactive Current p.u.	ILx reactive current in per-unit values (IL1, IL2, IL3)	Pos.seq. Reactive Current Pri.	Primary positive sequence reactive current
Pos.Seq. Resistive Current p.u.	Positive sequence resistive current in per- unit values	I0x Residual Resistive Current Pri.	Primary residual resistive current I0x (I01, I02)
Pos.Seq. Reactive Current p.u.	Positive sequence reactive current in per- unit values	I0x Residual Reactive Current Pri.	Primary residual reactive current I0x (I01, I02)
I0x Residual Resistive Current p.u.	I0x residual resistive current in per-unit values (I01, I02)	ILx Resistive Current Sec.	Secondary resistive current ILx (IL1, IL2, IL3)

Signal	Description	Signal	Description	
I0x Residual Reactive Current p.u.	I0x residual ractive current in per-unit values (I01, I02)	ILx Reactive Current Sec.	Secondary reactive current ILx (IL1, IL2, IL3)	
ILx Resistive Current Pri.	Primary resistive current ILx (IL1, IL2, IL3)	I0x Residual Resistive Current Sec.	Secondary residual resistive current I0x (I01, I02)	
ILx Reactive Current Pri.	Primary reactive current ILx (IL1, IL2, IL3)	I0x Residual Reactive Current Sec.	Secondary residual reactive current I0x (I01, I02)	
Power, GYB, frequency				
Lx PF	Lx power factor (L1, L2, L3)	Curve x Input	Input of Curve x (1, 2, 3, 4)	
POW1 3PH Apparent power (S)	Three-phase apparent power	Curve x Output	Output of Curve x (1, 2, 3, 4)	
POW1 3PH Apparent power (S MVA)	Three-phase apparent power in megavolt- amperes	Enablefbasedfunctions(VT1)	Enable frequency-based functions	
POW1 3PH Active power (P)	Three-phase active power Track.sys.f. Tracked system frequ		Tracked system frequency	
POW1 3PH Active power (P MW)	e Three-phase active power in megawatts Sampl.f. used		Used sample frequency	
POW1 3PH Reactive power (Q)	Three-phase reactive power	Tr f CH x	Tracked frequency (channels A, B, C)	
POW1 3PH Reactive power (Q MVar)	Three-phase reactive power in megavars	Alg f Fast Fast frequency algorithm		
POW1 3PH Tan(phi)	Three-phase tangent phi	Alg f avg	Average frequency algorithm	
POW1 3PH Cos(phi)	Three-phase cosine phi	Frequency based protections blocked	When true ("1"), all frequency- based protections are blocked.	
3PH PF	Three-phase power factor	f atm. Protections (when not measurable returns to nominal) Frequency at the momen system nominal is set to will show "50 Hz".		
Neutral conductance G (Pri)	Primary neutral conductance	f atm. Display (when not measurable is 0 Hz)	Frequency at the moment. If the frequency is not measurable, this will show "0 Hz".	
Neutral susceptance B (Pri)	Primary neutral susceptance	f meas qlty	Quality of tracked frequency	
Neutral admittance Y (Pri)	Primary neutral admittance	f meas from	Indicates which of the three voltage or current channel frequencies is used by the device.	

Signal	Description	Signal	Description
Neutral admittance Y (Ang)	Neutral admittace angle	SS1.meas.frqs	Synchrocheck – the measured frequency from voltage channel 1
I01 Resistive component (Pri)	Primary resistive component I01	SS2.meas.frqs	Synchrocheck – the measured frequency from voltage channel 2
I01 Capacitive component (Pri)	Primary capacitive component I01	Enable f based functions	Status of this signal is active when frequency-based protection functions are enabled.

Table. 4.6.5 - 298. Digital recording channels – Binary signals.

Signal	Description	Signal	Description
DIx	Digital input 111	Timer x Output	Output of Timer 110
Open/close control buttons	Active if buttons I or 0 in the unit's front panel are pressed.	Internal Relay Fault active	If the unit has an internal fault, this signal is active.
Status PushButton x On	Status of Push Button 112 is ON	(Protection, control and monitoring event signals)	(see the individual function description for the specific outputs)
Status PushButton x Off	Status of Push Button 112 is OFF	Always True/False	"Always false" is always "0". Always true is always "1".
Forced SG in use	Stage forcing in use	OUTx	Output contact statuses
SGx Active	Setting group 18 active	GOOSE INx	GOOSE input 164
Double Ethernet LinkA down	Double ethernet communication card link A connection is down.	GOOSE INx quality	Quality of GOOSE input 164
Double Ethernet LinkB down	Double ethernet communication card link B connection is down.	Logical Input x	Logical input 132
MBIO ModA Ch x Invalid	Channel 18 of MBIO Mod A is invalid	Logical Output x	Logical output 164
MBIO ModB Ch x Invalid	Channel 18 of MBIO Mod B is invalid	NTP sync alarm	If NTP time synchronization is lost, this signal will be active.
MBIO ModB Ch x Invalid	Channel 18 of MBIO Mod C is invalid	Ph.Rotating Logic control 0=A-B-C, 1=A- C-B	Phase rotating order at the moment. If true ("1") the phase order is reversed.

NOTICE!

Digital channels are measured every 5 ms.

Recording settings and triggering

Disturbance recorder can be triggered manually or automatically by using the dedicated triggers. Every signal listed in "Digital recording channels" can be selected to trigger the recorder.

The device has a maximum limit of 100 for the number of recordings. Even when the recordings are very small, their number cannot exceed 100. The number of analog and digital channels together with the sample rate and the time setting affect the recording size. See calculation examples below in the section titled "Estimating the maximum length of total recording time".

Name	Range	Description
Recorder enabled	EnabledDisabled	Enables and disables the disturbance recorder function.
Recorder status	 Recorder ready Recording triggered Recording and storing Storing recording Recorder full Wrong config 	Indicates the status of recorder.
Clear record+	02 ³² -1	Clears selected recording. If "1" is inserted, first recording will be cleared from memory. If "10" is inserted, tenth (10th) recording will be cleared from memory.
Manual trigger	• - • Trig	Triggers disturbance recording manually. This parameter will return back to "-" automatically.
Clear all records	• - • Clear	Clears all disturbance recordings.
Clear newest record	• - • Clear	Clears the newest stored disturbance recording.
Clear oldest record	• - • Clear	Clears the oldest stored disturbance recording.
Max. number of recordings	0100	Displays the maximum number of recordings that can be stored in the device's memory with settings currently in use. The maximum number of recordings can go up to 100.
Max. length of a recording	0.0001800.000s	Displays the maximum length of a single recording.
Max. location of the pre- trigger	0.0001800.000s	Displays the highest pre-triggering time that can be set with the settings currently in use.
Recordings in memory	0100	Displays how many recordings are stored in the memory.

Table. 4.6.5 - 299. Recorder control settings.

Table. 4.6.5 - 300. Recorder trigger setting.

Name	Description
Recorder trigger	Selects the trigger input(s). Clicking the "Edit" button brings up a pop-up window, and checking the boxes enable the selected triggers.

Table. 4.6.5 - 301. Recorder settings.

Name	Range	Default	Description
Recording length	0.1001800.000s	1s	Sets the length of a recording.
Recording mode	FIFOKeep olds	FIFO	Selects what happens when the memory is full. "FIFO" (= first in, first out) replaces the oldest stored recording with the latest one. "Keep olds" does not accept new recordings.
Analog channel samples	 64s/c 32s/c 16s/c 8s/c 	64s/c	Selects the sample rate of the disturbance recorder in samples per cycle. The samples are saved from the measured wave according to this setting.
Digital channel samples	5ms (fixed)	5 ms(fixed)	The fixed sample rate of the recorded digital channels.
Pretriggering time	0.230.0s	0.2s	Sets the recording length before the trigger.
Analog recording CH1CH20	08 freely selectable channels	-	Selects the analog channel for recording. Please see the list of all available analog channels in the section titled "Analog and digital recording channels".
Automatically get recordings	DisabledEnabled	Disabled	Enables and disables the automatic transfer of recordings. The recordings are taken from the device's protection CPU and transferred to the device's FTP directory in the communication CPU; the FTP client then automatically loads the recordings from the device and transfers them further to the SCADA system. Please note that when this setting is enabled, all new disturbance recordings will be pushed to the FTP server of the device. Up to six (6) recordings can be stored in the FTP at once. Once those six recordings have been retrieved and removed, more recordings will then be pushed to the FTP. When a recording has been sent to the FTP server of the device, it is no longer accessible through setting tools <i>Disturbance recorder</i> \rightarrow <i>Get DR files</i> command.
Recorder digital channels	095 freely selectable channels	-	Selects the digital channel for recording. Please see the list of all available digital channels in the section titled "Analog and digital recording channels".

NOTICE!

The disturbance recorder is not ready unless the "Max. length of a recording" parameter is showing some value other than zero. At least one trigger input has to be selected in the "Recorder Trigger" setting to fulfill this term.

i

Estimating the maximum length of total recording time

Once the disturbance recorder's settings have been made and loaded to the device, the device automatically calculates and displays the total length of recordings. However, if the user wishes to confirm this calculation, they can do so with the following formula. Please note that the formula assumes there are no other files in the FTP that share the 64 MB space.

$$\frac{\text{Total sample reserve}}{(f_n * (Ch_{an} + 1) * SR) + (200 Hz * Ch_{dig})}$$

Where:

- total sample reserve = the number of samples available in the FTP when no other files are saved; calculated by dividing the total number of available bytes by 4 bytes (=the size of one sample); e.g. 64 306 588 bytes/4 bytes = 16 076 647 samples.
- f_n = the nominal frequency (Hz).
- *Ch_{an}* = the number of analog channels recorded; "+ 1" stands for the time stamp for each recorded sample.
- *SR* = the selected sample rate (s/c).
- 200 Hz = the rate at which digital channels are always recorded, i.e. 5 ms.
- *Ch_{dig}* = the number of digital channels recorded.

For example, let us say the nominal frequency is 50 Hz, the selected sample rate is 64 s/c, nine (9) analog channels and two (2) digital channels record. The calculation is as follows:

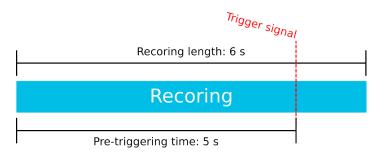
 $\frac{16\ 076\ 647\ samples}{(50\ Hz\ *\ (9\ +\ 1)\ *\ 64)\ +\ (200\ Hz\ *\ 2)}\approx 496\ s$

Therefore, the maximum recording length in our example is approximately 496 seconds.

Application example

This chapter presents an application example of how to set the disturbance recorder and analyze its output. The recorder is configured by using the setting tool software or device HMI, and the results are analyzed with the AQviewer software (is automatically downloaded and installed with AQtivate). Registered users can download the latest tools from the Arcteq website (arcteq.fi./downloads/).

In this example, we want the recordings to be made according to the following specifications:


- the recording length is 6.0 s
- the sample rate is 64 s/c (therefore, with a 50 Hz system frequency a sample is taken every 312.5 $\mu s)$
- the analog channels 1...8 are used
- digital channels are tracked every 5 ms
- the first activation of the overcurrent stage trip (I> TRIP) triggers the recorder
- the pre-triggering time is 5 (ie. how long is recorded before the I> TRIP signal) and the posttriggering time is 1 s

The image below shows how these settings are placed in the setting tool.

order Control —		Recorder Settings	
-			
	Enabled	Recording length	
	Recorder ready 🗸		0.1001800.000 [0.001]
		Recording mode	FIFO
	04294967295 [1]	Analog channel samples	64s/c
all records		Digital channel samples	5ms r
newest record		Pre triggering time	0.115.0 [0.1]
dest record		Analog Recording CH1	IL1 1
	61	Analog Recording CH2	IL2
	04294967295 [1]	Analog Recording CH3	IL3
	414.44 s	Analog Recording CH4	101C
	0.0001800.000 [0.001]	Analog Recording CH5	UL1(2)VT1
	6 s 0.0001800.000 [0.001]	Analog Recording CH6	UL2(3)VT1
gs in memory		Analog Recording CH7	UL3(1)VT1
	04294967295 [1]	Analog Recording CH8	U0(SS)VT1
		Analog Recording CH9	none
		Analog Recording CH10	102C
T.:		Analog Recording CH11	102F
er Trigger Se	L	Analog Recording CH12	none
		Analog Recording CH13	none
er Trigger		Analog Recording CH14	none
		Analog Recording CH15	none
		Analog Recording CH16	none
		Analog Recording CH17	none
		Analog Recording CH18	none
		Analog Recording CH19	none
		Analog Recording CH20	none
		Auto. get recordings	Disabled
		Rec.Digital Channels	
		Track.sys.f	
		I> START (General)	
		I> TRIP (General)	

Figure. 4.6.5 - 165. Disturbance recorder settings.

Figure. 4.6.5 - 166. Effects of recording length and pre-triggering time signals. This example is based on the settings shown above.

When there is at least one recording in the device's memory, that recording can be analyzed by using the AQviewer software (see the image below). However, the recording must first be made accessible to AQViewer. The user can read it from the device's memory (*Disturbance recorder* \rightarrow *Get DR*-*files*). Alternatively, the user can load the recordings individually (*Disturbance recorder* \rightarrow *DR List*) from a folder in the PC's hard disk drive; the exact location of the folder is described in *Tools* \rightarrow *Settings* \rightarrow *DR path*.

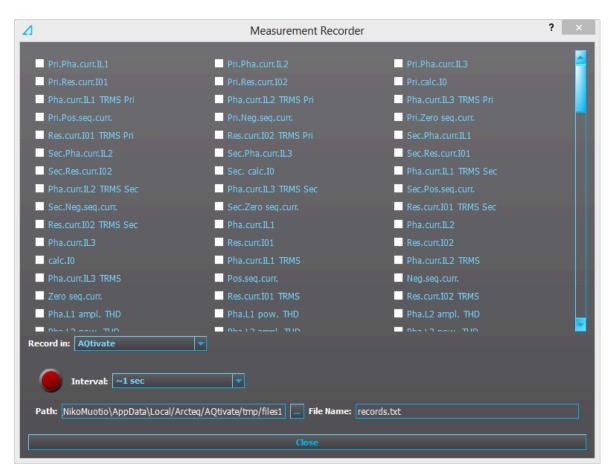
The user can also launch the AQviewer software from the *Disturbance recorder* menu. AQviewer software instructions can be found in AQtivate 200 Instruction manual (<u>arcteq.fi./downloads/</u>).

Events

The disturbance recorder function (abbreviated "DR" in event block names) generates events and registers from the status changes in the events listed below. Events cannot be masked off. The events triggered by the function are recorded with a time stamp.

Table. 4.6.5 - 302. Event messages.

Event block name	Event names
DR1	Recorder triggered ON
DR1	Recorder triggered OFF
DR1	Recorder memory cleared
DR1	Oldest record cleared
DR1	Recorder memory full ON
DR1	Recorder memory full OFF
DR1	Recording ON
DR1	Recording OFF
DR1	Storing recording ON
DR1	Storing recording OFF
DR1	Newest record cleared


4.6.6 Event logger

Event logger records status changes of protection functions, digital inputs, logical signals etc. Events are recorded with a timestamp. The time stamp resolution is 1 ms. Up to 15 000 events can be stored at once. When 15 000 events have been recorded, the event history will begin to remove the oldest events to make room for new events. You can find more information about event masks in the selected function's "Events" tab. Event masks determine what is recorded into the event history; they are configured in each function's individual settings in the *Protection, Control* and *Monitoring* menu. Event history is accessible with PC setting tool (*Tools* \rightarrow *Events and Logs* \rightarrow *Event history*) and from the device HMI if "Events" view has been configured with Carousel designer in PC setting tool.

Event overload detection

Continuous generation of a high number of nuisance events may have adverse effects on the operation and communication capabilities of the device. A high number of nuisance events may end up being generated due to mistakes in configuration and/or installation. For example, mistakes in logic configuration or RTD sensor wiring, in conjunction with suitable event mask settings may generate an excessive number of unintended events. Event overload detector looks for a condition where over 200 events are being generated inside one (1) second window (more than 1 event every 5 milliseconds on average). If such a condition is detected, further events are blocked and an IRF (Internal Relay Faultmessage) is issued. The event blocking is released and the IRF can be cleared after 5 seconds if the overload condition has been corrected. Other device operations, such as protection and communication, remain available even during the event overload condition.

4.6.7 Measurement recorder

Measurements can be recorded to a file with the measurement recorder. The chosen measurements are recorded at selected intervals. In the "Measurement recorder" window, the measurements the user wants to be recorded can be selected by checking their respective check boxes. In order for the measurement recorder to activate, a connection to a device must be established via the setting tool software and its Live Edit mode must be enabled (see the AQtivate 200 manual for more information). Navigate to the measurement recorder through $Tools \rightarrow Miscellaneous tools \rightarrow Measurement$ recorder. The recording interval can be changed from the "Interval" drop-down menu. From the "Record in" drop-down menu the user can also choose whether the measurements are recorded in the setting tool or in the device.

If the recording is done in the setting tool, both the setting tool software and its Live Edit mode have to be activated. The user can change the recording file location by editing the "Path" field. File names can also be changed with the "File name" field. Hitting the "Record" button (the big red circle) starts the recorder. Please note that closing the "Measurement recorder" window does not stop the recording; that can only be done by hitting the "Stop" button (the big blue circle).

If the recording is done in the device, only the recording interval needs to be set before recording can be started. The setting tool estimates the maximum recording time, which depends on the recording interval. When the measurement recorder is running, the measurements can be viewed in graph form with the AQtivate PRO software (see the image below).

Current measurements	Irements P-P Curr.I"L3 L1 Imp.React.Ind.E.Mvarh	
Pri.Pha.Curr.IL1	P-P Curr.I"01	L1 Imp.React.Ind.E.kvarh
Pri.Pha.Curr.IL2	P-P Curr.I"02	L1 Exp/Imp React.Ind.E.bal.Mvarh
Pri.Pha.Curr.IL3	Pha.angle I"L1	L1 Exp/Imp React.Ind.E.bal.kvarh
Pri.Res.Curr.I01	Pha.angle I"L2	L2 Exp.Active Energy MWh
Pri.Res.Curr.I02	Pha.angle I"L3	L2 Exp.Active Energy kWh
Pri.Calc.I0	Res.Curr.angle I"01	L2 Imp.Active Energy MWh
Pha.Curr.IL1 TRMS Pri	Res.Curr.angle I"02	L2 Imp.Active Energy kWh
Pha.Curr.IL2 TRMS Pri	Calc.I"0.angle	L2 Exp/Imp Act. E balance MWh
Pha.Curr.IL3 TRMS Pri	I" Pos.Seq.Curr.angle	L2 Exp/Imp Act. E balance kWh
Pri.Pos.Seq.Curr.	I" Neg.Seq.Curr.angle	L2 Exp.React.Cap.E.Mvarh
Pri.Neg.Seq.Curr.	I" Zero.Seq.Curr.angle	L2 Exp.React.Cap.E.kvarh
Pri.Zero.Seq.Curr.	Voltage measurements	L2 Imp.React.Cap.E.Mvarh
Res.Curr.I01 TRMS Pri	U1Volt Pri	L2 Imp.React.Cap.E.kvarh
Res.Curr.I02 TRMS Pri	U2Volt Pri	L2 Exp/Imp React.Cap.E.bal.Mvarh
Sec.Pha.Curr.IL1	U3Volt Pri	L2 Exp/Imp React.Cap.E.bal.kvarh
Sec.Pha.Curr.IL2	U4Volt Pri	L2 Exp.React.Ind.E.Mvarh

ec.Pha.Curr.IL3 U1Volt Pri TRMS		L2 Exp.React.Ind.E.kvarh
Sec.Res.Curr.I01	U2Volt Pri TRMS	L2 Imp.React.Ind.E.Mvarh
Sec.Res.Curr.I02	U3Volt Pri TRMS	L2 Imp.React.Ind.E.kvarh
Sec.Calc.I0	U4Volt Pri TRMS	L2 Exp/Imp React.Ind.E.bal.Mvarh
Pha.Curr.IL1 TRMS Sec	Pos.Seq.Volt.Pri	L2 Exp/Imp React.Ind.E.bal.kvarh
Pha.Curr.IL2 TRMS Sec	Neg.Seq.Volt.Pri	L3 Exp.Active Energy MWh
Pha.Curr.IL3 TRMS Sec	Zero.Seq.Volt.Pri	L3 Exp.Active Energy kWh
Sec.Pos.Seq.Curr.	U1Volt Sec	L3 Imp.Active Energy MWh
Sec.Neg.Seq.Curr.	U2Volt Sec	L3 Imp.Active Energy kWh
Sec.Zero.Seq.Curr.	U3Volt Sec	L3 Exp/Imp Act. E balance MWh
Res.Curr.I01 TRMS Sec	U4Volt Sec	L3 Exp/Imp Act. E balance kWh
Res.Curr.I02 TRMS Sec	U1Volt Sec TRMS	L3 Exp.React.Cap.E.Mvarh
Pha.Curr.IL1	U2Volt Sec TRMS	L3 Exp.React.Cap.E.kvarh
Pha.Curr.IL2	U3Volt Sec TRMS	L3 Imp.React.Cap.E.Mvarh
Pha.Curr.IL3	U4Volt Sec TRMS	L3 Imp.React.Cap.E.kvarh
Res.Curr.I01	Pos.Seq.Volt.Sec	L3 Exp/Imp React.Cap.E.bal.Mvarh
Res.Curr.I02	Neg.Seq.Volt.Sec	L3 Exp/Imp React.Cap.E.bal.kvarh
Calc.I0	Zero.Seq.Volt.Sec	L3 Exp.React.Ind.E.Mvarh
Pha.Curr.IL1 TRMS	U1Volt p.u.	L3 Exp.React.Ind.E.kvarh
Pha.Curr.IL2 TRMS	U2Volt p.u.	L3 Imp.React.Ind.E.Mvarh
Pha.Curr.IL3 TRMS	U3Volt p.u.	L3 Imp.React.Ind.E.kvarh
Pos.Seq.Curr.	U4Volt p.u.	L3 Exp/Imp React.Ind.E.bal.Mvarh
Neg.Seq.Curr.	U1Volt TRMS p.u.	L3 Exp/Imp React.Ind.E.bal.kvarh
Zero.Seq.Curr.	U2Volt TRMS p.u.	Exp.Active Energy MWh
Res.Curr.I01 TRMS	U3Volt p.u.	Exp.Active Energy kWh
Res.Curr.I02 TRMS	U4Volt p.u.	Imp.Active Energy MWh
Pha.L1 ampl. THD	Pos.Seq.Volt. p.u.	Imp.Active Energy kWh
Pha.L2 ampl. THD	Neg.Seq.Volt. p.u.	Exp/Imp Act. E balance MWh
Pha.L3 ampl. THD	Zero.Seq.Volt. p.u.	Exp/Imp Act. E balance kWh
Pha.L1 pow. THD	U1Volt Angle	Exp.React.Cap.E.Mvarh
Pha.L2 pow. THD	U2Volt Angle	Exp.React.Cap.E.kvarh
Pha.L3 pow. THD	U3Volt Angle	Imp.React.Cap.E.Mvarh

Res.I01 ampl. THD	U4Volt Angle	Imp.React.Cap.E.kvarh
Res.I01 pow. THD	Pos.Seq.Volt. Angle	Exp/Imp React.Cap.E.bal.Mvarh
Res.I02 ampl. THD	Neg.Seq.Volt. Angle	Exp/Imp React.Cap.E.bal.kvarh
Res.I02 pow. THD	Zero.Seq.Volt. Angle	Exp.React.Ind.E.Mvarh
P-P Curr.IL1	System Volt UL12 mag	Exp.React.Ind.E.kvarh
P-P Curr.IL2	System Volt UL12 mag (kV)	Imp.React.Ind.E.Mvarh
P-P Curr.IL3	System Volt UL23 mag	Imp.React.Ind.E.kvarh
P-P Curr.I01	System Volt UL23 mag (kV)	Exp/Imp React.Ind.E.bal.Mvarh
P-P Curr.I02	System Volt UL31 mag	Exp/Imp React.Ind.E.bal.kvarh
Pha.angle IL1	System Volt UL31 mag (kV)	Other measurements
Pha.angle IL2	System Volt UL1 mag	TM> Trip expect mode
Pha.angle IL3	System Volt UL1 mag (kV)	TM> Time to 100% T
Res.Curr.angle I01	System Volt UL2 mag	TM> Reference T curr.
Res.Curr.angle I02	System Volt UL2 mag (kV)	TM> Active meas curr.
Calc.I0.angle	System Volt UL3 mag	TM> T est.with act. curr.
Pos.Seq.Curr.angle	System Volt UL3 mag (kV)	TM> T at the moment
Neg.Seq.Curr.angle	System Volt U0 mag	TM> Max.Temp.Rise All.
Zero.Seq.Curr.angle	System Volt U0 mag (kV)	TM> Temp.Rise atm.
Pri.Pha.Curr.I"L1	System Volt U1 mag	TM> Hot Spot estimate
Pri.Pha.Curr.I"L2	System Volt U1 mag (kV)	TM> Hot Spot Max. All
Pri.Pha.Curr.I"L3	System Volt U2 mag	TM> Used k for amb.temp
Pri.Res.Curr.I"01	System Volt U2 mag (kV)	TM> Trip delay remaining
Pri.Res.Curr.I"02	System Volt U3 mag	TM> Alarm 1 time to rel.
Pri.Calc.I"0	System Volt U3 mag (kV)	TM> Alarm 2 time to rel.
Pha.Curr.I"L1 TRMS Pri	System Volt U4 mag	TM> Inhibit time to rel.
Pha.Curr.I"L2 TRMS Pri	System Volt U4 mag (kV)	TM> Trip time to rel.
Pha.Curr.I"L3 TRMS Pri	System Volt UL12 ang	S1 Measurement
I" Pri.Pos.Seq.Curr.	System Volt UL23 ang	S2 Measurement
I" Pri.Neg.Seq.Curr.	System Volt UL31 ang	S3 Measurement
I" Pri.Zero.Seq.Curr.	System Volt UL1 ang	S4 Measurement
Res.Curr.I"01 TRMS Pri	System Volt UL2 ang	S5 Measurement
Res.Curr.I"02 TRMS Pri	System Volt UL3 ang	S6 Measurement

r	1	1
Sec.Pha.Curr.I"L1	System Volt U0 ang	S7 Measurement
Sec.Pha.Curr.I"L2	System Volt U1 ang	S8 Measurement
Sec.Pha.Curr.I"L3	System Volt U2 ang	S9 Measurement
Sec.Res.Curr.I"01	System Volt U3 ang	S10 Measurement
Sec.Res.Curr.I"02	System Volt U4 ang	S11 Measurement
Sec.Calc.I"0	Power measurements	S12 Measurement
Pha.Curr.I"L1 TRMS Sec	L1 Apparent Power (S)	Sys.meas.frqs
Pha.Curr.I"L2 TRMS Sec	L1 Active Power (P)	f atm.
Pha.Curr.I"L3 TRMS Sec	L1 Reactive Power (Q)	f meas from
l" Sec.Pos.Seq.Curr.	L1 Tan(phi)	SS1.meas.frqs
l" Sec.Neg.Seq.Curr.	L1 Cos(phi)	SS1f meas from
I" Sec.Zero.Seq.Curr.	L2 Apparent Power (S)	SS2 meas.frqs
Res.Curr.I"01 TRMS Sec	L2 Active Power (P)	SS2f meas from
Res.Curr.I"02 TRMS Sec	L2 Reactive Power (Q)	L1 Bias current
Pha.Curr.I"L1	L2 Tan(phi)	L1 Diff current
Pha.Curr.I"L2	L2 Cos(phi)	L1 Char current
Pha.Curr.I"L3	L3 Apparent Power (S)	L2 Bias current
Res.Curr.I"01	L3 Active Power (P)	L2 Diff current
Res.Curr.I"02	L3 Reactive Power (Q)	L2 Char current
Calc.I"0	L3 Tan(phi)	L3 Bias current
Pha.Curr.I"L1 TRMS	L3 Cos(phi)	L3 Diff current
Pha.Curr.I"L2 TRMS	3PH Apparent Power (S)	L3 Char current
Pha.Curr.I"L3 TRMS	3PH Active Power (P)	HV I0d> Bias current
l" Pos.Seq.Curr.	3PH Reactive Power (Q)	HV I0d> Diff current
l" Neg.Seq.Curr.	3PH Tan(phi)	HV I0d> Char current
l" Zero.Seq.Curr.	3PH Cos(phi)	LV I0d> Bias current
Res.Curr.I"01 TRMS	Energy measurements	LV I0d> Diff current
Res.Curr.I"02 TRMS	L1 Exp.Active Energy MWh	LV I0d> Char current
Pha.IL"1 ampl. THD	L1 Exp.Active Energy kWh	Curve1 Input
Pha.IL"2 ampl. THD	L1 Imp.Active Energy MWh	Curve1 Output
Pha.IL"3 ampl. THD	L1 Imp.Active Energy kWh	Curve2 Input
Pha.IL"1 pow. THD	L1 Exp/Imp Act. E balance MWh	Curve2 Output

Pha.IL"2 pow. THD	L1 Exp/Imp Act. E balance kWh	Curve3 Input
Pha.IL"3 pow. THD	L1 Exp.React.Cap.E.Mvarh	Curve3 Output
Res.I"01 ampl. THD	L1 Exp.React.Cap.E.kvarh	Curve4 Input
Res.I"01 pow. THD	L1 Imp.React.Cap.E.Mvarh	Curve4 Output
Res.I"02 ampl. THD	L1 Imp.React.Cap.E.kvarh	Control mode
Res.I"02 pow. THD	L1 Exp/Imp React.Cap.E.bal.Mvarh	Motor status
P-P Curr.I"L1	L1 Exp/Imp React.Cap.E.bal.kvarh	Active setting group
P-P Curr.I"L2	L1 Exp.React.Ind.E.Mvarh	
	L1 Exp.React.Ind.E.kvarh	

4.6.8 Measurement value recorder

The measurement value recorder function records the value of the selected magnitudes at the time of a pre-defined trigger signal. A typical application is the recording of fault currents or voltages at the time of the breaker trips; it can also be used to record the values from any trigger signal set by the user. The user can select whether the function records per-unit values or primary values. Additionally, the user can set the function to record overcurrent fault types or voltage fault types. The function operates instantly from the trigger signal.

The measurement value recorder function has an integrated fault display which shows the current fault values when the tripped by one of the following functions:

- I> (non-directional overcurrent)
- I2> (current unbalance)
- Idir> (directional overcurrent)
- I0> (non-directional earth fault)
- I0dir> (directional earth fault)
- f<(underfrequency)
- f> (overfrequency)
- U< (undervoltage)
- U> (overvoltage)
- U1/U2 >/< (sequence voltage)
- U0> (residual voltage)
- P> (over power)
- P< (under power)
- Prev> (reverse power)
- T> (thermal overload)

Measured input

The function block uses analog current and voltage measurement values. Based on these values, the device calculates the primary and secondary values of currents, voltages, powers, and impedances as well as other values.

The user can set up to eight (8) magnitudes to be recorded when the function is triggered. An overcurrent fault type, a voltage fault type, and a tripped stage can be recorded and reported straight to SCADA.

NOTICE! The availa

The available measurement values depend on the device type. If only current analog measurements are available, the recorder can solely use signals which only use current. The same applies, if only voltage analog measurements are available.

Currents	Description
IL1 (ff), IL2 (ff), IL3 (ff), I01 (ff), I02 (ff)	The fundamental frequency current measurement values (RMS) of phase currents and of residual currents.
IL1TRMS, IL2TRMS, IL3TRMS, I01TRMS, I02TRMS	The TRMS current measurement values of phase currents and of residual currents.
IL1,2,3 & I01/I02 2 nd h., 3 rd h., 4 th h., 5 th h., 7 th h., 9 th h., 11 th h., 13 th h., 15 th h., 17 th h., 19 th h.	The magnitudes of phase current components: Fundamental, 2 nd harmonic, 3 rd harmonic, 4 th harmonic, 5 th harmonic 7 th , harmonic 9 th , harmonic 11 th , harmonic 13 th , harmonic 15 th , harmonic 17 th , harmonic 19 th harmonic current.
I1, I2, I0Z	The positive sequence current, the negative sequence current and the zero sequence current.
I0CalcMag	The residual current calculated from phase currents.
IL1Ang, IL2Ang, IL3Ang, I01Ang, I02Ang, I0CalcAng, I1Ang, I2Ang	The angles of each measured current.
Voltages	Description
UL1Mag, UL2Mag, UL3Mag, UL12Mag, UL23Mag, UL31Mag U0Mag, U0CalcMag	The magnitudes of phase voltages, of phase-to-phase voltages, and of residual voltages.
U1 Pos.seq V mag, U2 Neg.seq V mag	The positive sequence voltage and the negative sequence voltage.
UL1Ang, UL2Ang, UL3Ang, UL12Ang, UL23Ang, UL31Ang U0Ang, U0CalcAng	The angles of phase voltages, of phase-to-phase voltages, and of residual voltages.
U1 Pos.seq V Ang, U2 Neg.seq V Ang	The positive sequence angle and the negative sequence angle.
Powers	Description
S3PH, P3PH, Q3PH	The three-phase apparent, active and reactive powers.
SL1, SL2, SL3, PL1, PL2, PL3, QL1, QL2, QL3	The phase apparent, active and reactive powers.
tanfi3PH, tanfiL1, tanfiL2, tanfiL3	The tan (ϕ) of three-phase powers and phase powers.
cosfi3PH, cosfiL1, cosfiL2, cosfiL3	The cos (ϕ) of three-phase powers and phase powers.
Impedances and admittances	Description

Currents	Description
RL12, RL23, RL31 XL12, XL23, XL31, RL1, RL2, RL3 XL1, XL2, XL3 Z12, Z23, Z31 ZL1, ZL2, ZL3	The phase-to-phase and phase-to-neutral resistances, reactances and impedances.
Z12Ang, Z23Ang, Z31Ang, ZL1Ang, ZL2Ang, ZL3Ang	The phase-to-phase and phase-to-neutral impedance angles.
Rseq, Xseq, Zseq RseqAng, XseqAng, ZseqAng	The positive sequence resistance, reactance and impedance values and angles.
GL1, GL2, GL3, G0 BL1, BL2, BL3, B0 YL1, YL2, YL3, Y0	The conductances, susceptances and admittances.
YL1angle, YL2angle, YL3angle Y0angle	The admittance angles.
Others	Description
System f.	The tracking frequency in use at that moment.
Ref f1	The reference frequency 1.
Ref f2	The reference frequency 2.
M thermal T	The motor thermal temperature.
F thermal T	The feeder thermal temperature.
T thermal T	The transformer thermal temperature.
RTD meas 116	The RTD measurement channels 116.
Ext RTD meas 18	The external RTD measurement channels 18 (ADAM module).

Reported values

When triggered, the function holds the recorded values of up to eight channels, as set. In addition to this tripped stage, the overcurrent fault type and the voltage fault types are reported to SCADA.

Table. 4.6.8 - 304. Reported values.

Name	Range	Description
Tripped stage	 - I> Trip I>>> Trip I>>>> Trip IDir>> Trip IDir>> Trip IDir>> Trip IDir>>> Trip IDir>>> Trip IDir>>> Trip U>> Trip U>> Trip U>>> Trip U<>>> Trip U<>>> Trip U<>>> Trip U<>>> Trip U<>>> Trip U<>>> Trip U<>< Trip U<< Trip U<< Trip IO>>> Trip IO>>> Trip IO>>>> Trip IO>>>> Trip IO>>>> Trip IO>>>> Trip IODir>>>> Trip IODir>>>>>>>>>>>>>>>>> Trip IODir>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	The tripped stage.
Overcurrent fault type	 A-G B-G A-B C-G A-C B-C A-B-C 	The overcurrent fault type.

Name	Range	Description
Voltage fault type	 A(AB) B(BC) A-B(AB-BC) C(CA) A-C(AB-CA) B-C(BC-CA) A-B-C Overfrequency Underfrequency Overpower Underpower Reversepower Thermal overload Unbalance Harmonic overcurrent Residual overvoltage 	The voltage fault type.
Magnitude 18	0.0001800.000 A/V/p.u.	The recorded value in one of the eight channels.

Events

The measurement value recorder function (abbreviated "VREC" in event block names) generates events from the status changes in the events listed below. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp.

Table. 4.6.8 - 305. Event messages.

Event block name	Event name
VREC1	Recorder triggered ON
VREC1	Recorder triggered OFF

5 Communication

5.1 Connections menu

"Connections" menu is found under "Communication" menu. It contains all basic settings of ethernet port and RS-485 serial port included with every AQ-200 device as well as settings of communication option cards.

Table. 5.1 - 306. Ethernet settings.

Name	Range	Description
IP address	0.0.0.0255.255.255.255	Set IP address of the ethernet port in the back of the AQ-200 series device.
Netmask	0.0.0.0255.255.255.255	Set netmask of the ethernet port in the back of the AQ-200 series device.
Gateway	0.0.0.0255.255.255.255	Set gateway of the ethernet port in the back of the AQ-200 series device.
MAC- Address	00-00-00-00-00-00FF- FF-FF-FF-FF-FF	Indication of MAC address of the AQ-200 series device.
Storm Protection	DisableEnable	When enabled, the Storm protection functionality of the internal switch in the device is enabled. This functionality aims to protect the device from excess ethernet traffic caused by storm situation. When enabled, the packet rate allowed to pass through on the ingress port towards the device, is limited to 150 packets per second. Multicast packets are also included in the packet limit.
Double Ethernet card mode	SwitchHSRPRP	If the device has a double ethernet option card it is possible to choose its mode.
COM A and Ethernet option card connection	 Block all Allow both directions Allow COM A to option card Allow option card to COM A 	If the device has ethernet option card it is possible to determine the allowed direction of data.
Double Ethernet link events	DisableEnable	Disables or enables "Double Ethernet Link A down" and "Double Ethernet Link B down" logic signals and events.
Double Ethernet PRP ports	• AB • BA	LanA and LanB port assigment for communication cards that support PRP.

Virtual Ethernet enables the device to be connected to multiple different networks simultaneously via one physical Ethernet connection. Virtual Ethernet has its own separate IP address and network configurations. All Ethernet-based protocol servers listen for client connections on the IP addresses of both the physical Ethernet and the Virtual Ethernet.

Table. 5.1 - 307. Virtual Ethernet settings.

Name	Description
Enable virtual adapter (No / Yes)	Enable virtual adapter. Off by default.
IP address	Set IP address of the virtual adapter.
Netmask	Set netmask of the virtual adapter.
Gateway	Set gateway of the virtual adapter.

AQ-200 series devices are always equipped with an RS-485 serial port. In the software it is identified as "Serial COM1" port.

Table. 5.1 - 308. Serial COM1 settings.

Name	Range	Description
Bitrate	9600bps19200bps38400bps	Bitrate used by RS-485 port.
Databits	78	Databits used by RS-485 port.
Parity	NoneEvenOdd	Paritybits used by RS-485 port.
Stopbits	12	Stopbits used by RS-485 port.
Protocol	 None ModbutRTU ModbusIO IEC103 SPA DNP3 IEC101 	Communication protocol used by RS-485 port.

AQ-200 series supports communication option card type that has serial fiber ports (Serial COM2) an RS-232 port (Serial COM3).

Table. 5.1 - 309. Serial COM2 settings.

Name	Range	Description
Bitrate	9600bps19200bps38400bps	Bitrate used by serial fiber channels.
Databits	78	Databits used by serial fiber channels.
Parity	NoneEvenOdd	Paritybits used by serial fiber channels.
Stopbits	12	Stopbits used by serial fiber channels.

Name	Range	Description	
Protocol	 None ModbutRTU ModbusIO IEC103 SPA DNP3 IEC101 	Communication protocol used by serial fiber channels.	
Echo	OffOn	Enable or disable echo.	
Idle Light	OffOn	Idle light behaviour.	

Table. 5.1 - 310. Serial COM3 settings.

Name	Range	Description
Bitrate	9600bps19200bps38400bps	Bitrate used by RS-232 port.
Databits	78	Databits used by RS-232 port.
Parity	NoneEvenOdd	Paritybits used by RS-232 port.
Stopbits	12	Stopbits used by RS-232 port.
Protocol	 None ModbutRTU ModbusIO IEC103 SPA DNP3 IEC101 	Communication protocol used by RS-232 port.

5.2 Time synchronization

Time synchronization source can be selected with "Time synchronization" parameter at *Communication* \rightarrow *Synchronization* \rightarrow *General*.

Table. 5.2 - 311. General time synchroniz	ation source settings
Table: 0.2 OTT: Ocheral and Synemoniz	anon source settings.

Name	Range	Description
Time synchronization source	 Internal External NTP External serial IRIG-B PTP 	Selection of time synchronization source.

5.2.1 Internal

If no external time synchronization source is available the mode should be set to "internal". This means that the AQ-200 device clock runs completely on its own. Time can be set to the device with AQtivate setting tool with *Commands* \rightarrow *Sync Time* command or in the clock view from the HMI. When using *Sync time* command AQtivate sets the time to device the connected computer is currently using. Please note that the clock doesn't run when the device is powered off.

5.2.2 NTP

When enabled, the NTP (Network Time Protocol) service can use external time sources to synchronize the device's system time. The NTP client service uses an Ethernet connection to connect to the NTP time server. NTP can be enabled by setting the primary time server and the secondary time server parameters to the address of the system's NTP time source(s).

Table. 5.2.2 - 312.	Server settings.
---------------------	------------------

Name	Range	Description
Primary time server address	0.0.0.0255.255.255.255	Defines the address of the primary NTP server. Setting this parameter at "0.0.0.0" means that the server is not in use.
Secondary time server address	0.0.0.0255.255.255.255	Defines the address of the secondary (or backup) NTP server. Setting this parameter at "0.0.0.0" means that the server is not in use.
NTP version	34	Defines the NTP version used.

Table. 5.2.2 - 313. Status.

Name	Range	Description
NTP quality for events	No syncSynchronized	Displays the status of the NTP time synchronization at the moment. NOTE: This indication is not valid if another time synchronization method is used (external serial).
NTP-processed message count	04294967295	Displays the number of messages processed by the NTP protocol.

Additionally, the time zone of the device can be set by connecting to the device and the selecting the time zone at *Commands* \rightarrow *Set time zone* in AQtivate setting tool.

5.2.3 PTP

PTP, Precision Time Protocol, is a higher accuracy synchronization protocol for Ethernet networks. Accuracy of microsecond level can be achieved. Time protocol is compliant with IEEE 1588-2008, also known as PTP Version 2 and supports the power profiles as specified in IEEE C37.238-2011, 2017 and IEC61850-9-3 (2016) standards.

In a PTP network the devices can have different roles. There is a Grandmaster clock that is the clock source, normally connected to GPS. Most devices take the role of an Ordinary clock which receive synchronization from the Grandmaster clock. In the PTP network there can also be Boundary and Transparent clock roles, these are most often PTP enabled switches that can redistribute time or compensate for their delays.

BMCA, Best Master Clock Algorithm, is an algorithm that PTP devices use to determine the best clock source. This is utilized in network segments where there are 2 Grandmaster clocks or in situations where there are no Grandmaster available. In these situations the devices make a selection which device will act as the clock source. In these cases without GPS synchronized clock source, the accuracy between the devices is still high.

Settings

Select PTP as the time synchronization source from Communication \rightarrow Synchronization \rightarrow General menu.

The following settings are available in *Communication* \rightarrow *Synchronization* \rightarrow *PTP* menu.

Table. 5.2.3 - 31	4. PTP time	e synchronization	settings.

Name	Range	Description	
Power profile	 None IEEE C37-238-2011 IEC61850-9-3 IEEE C37-238-2017 	Defines used power profile.	
Role	Auto (Default)MasterSlave	In Auto mode, the device can take both the role of a clock source and clock consumer. In Master mode the device is forced to concider itself to be a clock source. In Slave mode the device is forced to be a clock consumer.	
Mechanism	P2P (Default)E2E	Delay measurement mechanism used. Peer-to-peer can utilize the PTP enabled switches as transparent ro boundary clocks while End-to-end must be used if non-PTP enabled switches are found in the network.	
Domain number	0255	PTP devices can be set to belong to a grouping called domain. Devices in same domain is primearly being synchronized together.	
Log announce interval		Mean time interval between successive announce messages.	
Log delayReq interval		The minimum permitted mean time interval between successive Delay_Req messages	
Log sync interval		Mean time interval between successive sync messages	
Sync receipt timeout		Number of sync intervals that must pass without receipt of an sync message before the occurrence of the event SYNC_RECEIPT_TIMEOUT_EXPIRES	
Announce receipt timeout		Number of announce intervals that must pass without receipt of an announce message before the occurrence of the event ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES	
Clock class		The traceability, synchronization state and expected performance of the time or frequency distributed by the Grandmaster PTP Instance	
Clock accuracy		The expected accuracy of a PTP Instance when it is the Grandmaster PTP Instance, or in the event it becomes the Grandmaster PTP Instance	

Name	Range	Description	
Priority 1		Priority setting used in the execution of the best master clock algorithm. Lower values take precedence	
Priority 2		Priority setting used in the execution of the best master clock algorithm. Lower values take precedence	
VLAN enable	DisabledEnabled	Enable VLAN header for PTP communication	
VLAN priority	07	Priority setting for VLAN	
VLAN ID	04095	VLAN identification setting	
Reconfigure PTP	 -Reconfigure	Parameter to trig reconfiguration of the PTP application	

Status indications

The following status indications are available in *Communication* \rightarrow *Synchronization* \rightarrow *PTP* menu.

Table. 5	.2.3 - 3	315. PTP	status	indications

Name	Description			
State	State of the PTP application (Master, Slave, Listening).			
Best master	Identification of best master in network. Id consist of MAC address plus id number.			
Last receive	Time when last synchronization frame was received.			
Message sent	Diagnostic message counter.			
Message receive	Diagnostic message counter.			
PTP timesource	Diagnostic number describing the current time source.			

5.3 Communication protocols

5.3.1 IEC 61850

The user can enable the IEC 61850 protocol in device models that support this protocol at *Communication* \rightarrow *Protocols* \rightarrow *IEC61850*. AQ-21x frame units support Edition 1 of IEC 61850. AQ-25x frame units support both Edition 1 and 2 of IEC 61850. The following services are supported by IEC 61850 in Arcteq devices:

- Up to six data sets (predefined data sets can be edited with the IEC 61850 tool in AQtivate)
- Report Control Blocks (both buffered and unbuffered reporting)
- Control ('Direct operate with normal security', 'Select before operate with normal security, 'Direct with enhanced security' and 'Select before operate with enhanced sequrity' control sequences)
- Disturbance recording file transfer
- GOOSE
- Time synchronization

The device's current IEC 61850 setup can be viewed and edited with the IEC61850 tool (*Tools* \rightarrow *Communication* \rightarrow *IEC* 61850).

Settings

The general setting parameters for the IEC 61850 protocol are visible both in AQtivate and in the local HMI. The settings are described in the table below.

Table. 5.3.1 - 316. General settings.

Name	Range	Step	Default	Description
Enable IEC 61850	DisabledEnabled	-	Disabled	Enables and disables the IEC 61850 communication protocol.
Reconfigure IEC 61850	 -Reconfigure	-	-	Reconfigures IEC 61850 settings.
IP port	065 535	1	102	Defines the IP port used by the IEC 61850 protocol. The standard (and default) port is 102.
IEC61850 edition	• Ed1 • Ed2	-	-	Displays the IEC61850 edition used by the device. Edition can be chosen by loading a new CID file at <i>Tools</i> \rightarrow <i>Communication</i> \rightarrow <i>IEC 61850</i> with <i>Open</i> button.
Control Authority switch	 Remote Control Station Level Control 	-	Remote Control	The device can be set to allow object control via IEC 61850 only from clients that are of category Station level control. This would mean that other Remote control clients would not be allowed to control. In Remote control mode all IEC 61850 clients of both remote and station level category are allowed to control objects.
Ethernet port	 All COM A Double ethernet card 	-	All	Determines which ports use IEC61850. Parameter is visible if double ethernet option card is found in the device.
Configure GOOSE Subscriber from CID file allowed	DisabledAllowed	-	Disabled	In edition 2 of IEC 61850 GOOSE subscriber configuration is a part of the CID file. Determines if it is possible to import published GOOSE settings of another device with a CID file and set them to GOOSE input at Tools \rightarrow <i>Communication</i> \rightarrow <i>IEC</i> 61850 \rightarrow GOOSE subscriptions.
General deadband	0.110.0 %	0.1 %	2 %	Determines the general data reporting deadband settings.
Active energy deadband	0.11000.0 kWh	0.1 kWh	2 kWh	Determines the data reporting deadband settings for this measurement.
Reactive energy deadband	0.11000.0 kVar	0.1 kVar	2 kVar	Determines the data reporting deadband settings for this measurement.
Active power deadband	0.11000.0 kW	0.1 kW	2 kW	Determines the data reporting deadband settings for this measurement.

5 Communication

Name	Range	Step	Default	Description
Reactive power deadband	0.11000.0 kVar	0.1 kVar	2 kVar	Determines the data reporting deadband settings for this measurement.
Apparent power deadband	0.11000.0 kVA	0.1 kVA	2 kVA	Determines the data reporting deadband settings for this measurement.
Power factor deadband	0.010.99	0.01	0.05	Determines the data reporting deadband settings for this measurement.
Frequency deadband	0.011.00 Hz	0.01 Hz	0.1 Hz	Determines the data reporting deadband settings for this measurement.
Current deadband	0.0150.00 A	0.01 A	5 A	Determines the data reporting deadband settings for this measurement.
Residual current deadband	0.0150.00 A	0.01 A	0.2 A	Determines the data reporting deadband settings for this measurement.
Voltage deadband	0.015000.00 V	0.01 V	200 V	Determines the data reporting deadband settings for this measurement.
Residual voltage deadband	0.015000.00 V	0.01 V	200 V	Determines the data reporting deadband settings for this measurement.
Angle measurement deadband	0.15.0 deg	0.1 deg	1 deg	Determines the data reporting deadband settings for this measurement.
Integration time	010 000 ms	1 ms	0 ms	Determines the integration time of the protocol. If this parameter is set to "0 ms", no integration time is in use.
GOOSE Ethernet port	 All COM A Double ethernet card 	-	All	Determines which ports can use GOOSE communication. Visible if double ethernet option card is found in the device.

For more information on the IEC 61850 communication protocol support, please refer to the conformance statement documents (<u>www.arcteq.fi/downloads/</u> \rightarrow AQ 200 series \rightarrow Resources).

5.3.1.1 Logical device mode and logical node mode

Every protection block has its own behavior (LNBeh). This behavior is determined using a combination of the protection block's mode (LNMod) and the device's mode (LDMod).

In IEC68150 mode,

- LNMod can be reported and controlled through Mod data object in all logical nodes.
- LNBeh can be reported through Beh data object in all logical nodes.
- LDMod is only visible through logical node zero's Mod data object (LLN0.Mod).

Mode and behavior values

There are 5 values defined for mode and behavior: On, Blocked, Test, Test / Blocked and Off.

Table. 5.3.1.1 - 317. Behavior descriptions.

LNBeh	On	Blocked	Test	Test / Blocked	Off
Function working	Yes	Yes	Yes	Yes	No
Data quality	Relevant to data	Relevant to data	q.test = True	q.test = True	q.validity = Invalid
Output to process	Yes	No	Yes	No	No
Accept normal control	Yes	Yes	No	No	No
Accept test control	No	No	Yes	Yes	No

The communication services for the data object Mod do not care about the status of the LNBeh. Mod will always accept commands with q.test = False.

Data objects Mod, Beh and Health will always have q.validity = Good. Regardless of the status of LNBeh, the quality test attribute of Mod, Beh and Health shall be q.test = False.

Behavior determination

The values for LDMod and LNMod are settable by the user by using HMI, setting tool, or IEC 61850 client. The value for LNBeh are then determined using following rules.

- If either LDMod or LNMod is Off, LNBeh is Off.
- Otherwise,
 - If either LDMod or LNMod is set to either "Test" or "Test / Blocked" mode, LNBeh is in Test mode.
 - If either LDMod or LNMod is set to either "Blocked" or "Test / Blocked" mode, LNBeh is in Blocked mode.
 - If LNBeh still doesn't have anything, LNBeh is "On".

All the possible combinations are laid out in the following table.

Table. 5.3.1.1 - 318. All possible logical device and logical node combinations.

LDMod	LNMod	LNBeh	
	Off	Off	
	Test / Blocked	Off	
Off	Test	Off	
	Blocked	Off	
	On	Off	
	Off	Off	
	Test / Blocked	Test / Blocked	
Test / Blocked	Test	Test / Blocked	
	Blocked	Test / Blocked	
	On	Test / Blocked	

5 Communication

Version: 2.12

LDMod	LNMod	LNBeh	
	Off	Off	
	Test / Blocked	Test / Blocked	
Test	Test	Test	
	Blocked	Test / Blocked	
	On	Test	
	Off	Off	
	Test / Blocked	Test / Blocked	
Blocked	Test	Test / Blocked	
	Blocked	Blocked	
	On	Blocked	
	Off	Off	
	Test / Blocked	Test / Blocked	
On	Test	Test	
	Blocked	Blocked	
	On	On	

Processing of incoming data in different behaviors

This part only applies to incoming data with quality information.

The table below gives the functional processing of the data in different behavior states **as defined by the standard**. Logical nodes should process receiving data according to their quality information:

- Processed as valid Reacts according to the quality.
- Processed as invalid Reacts as if the quality of the data had been invalid.
- Processed as questionable The application decides how to consider the status value.
- Not processed Do not belong to communication services, no quality bit can be evaluated.

Table 5211 210	Processing of incoming	data in different hebaviers	as defined by the standard.
10016. 0.0.1.1 - 019	. FIOCESSING OF INCOMING	uala in unerent benaviors	as defined by the standard.

	On	Blocked	Test	Test / Blocked	Off
q.validity = Good q.test = False	Processed as valid	Processed as valid	Processed as valid	Processed as valid	Not processed
q.validity = Questionable q.test = False	Processed as questionable	Processed as questionable	Processed as questionable	Processed as questionable	Not processed
q.validity = Good q.test = True	Processed as invalid	Processed as invalid	Processed as valid	Processed as valid	Not processed

	On	Blocked	Test	Test / Blocked	Off
q.validity = Questionable q.test = True	Processed as invalid	Processed as invalid	Processed as questionable	Processed as questionable	Not processed
q.validity = Invalid q.test = True/ False	Processed as invalid	Processed as invalid	Processed as invalid	Processed as invalid	Not processed

Arcteq's implementation treats "Processed as questionable" and "Processed as invalid" in the same way with "Not processed". Only "Processed as valid" is passed to the application.

Table. 5.3.1.1 - 320. Arcteq's implementation of processing of incoming data in different behaviors.

	On	Blocked	Test	Test / Blocked	Off
q.validity = Good q.test = False	Processed as valid	Processed as valid	Processed as valid	Processed as valid	
q.validity = Questionable q.test = False					
q.validity = Good q.test = True			Processed as valid	Processed as valid	
q.validity = Questionable q.test = True					
q.validity = Invalid q.test = True/False					

Using mode and behavior

Enabling LDMod and LNMod changing can be done at General \rightarrow Device info.

Table. 5.3.1.1 - 321. Parameters to allow changing of LNMod and LDMod.

Name	Range	Default	Description
Allow setting of device mode	 Prohibited From HMI/ setting tool only Allowed 	Prohibited	Allows global mode to be modified from setting tool, HMI and IEC61850. Prohibited: Cannot be changed. From HMI/setting tool only: Can only be changed from the setting tool or HMI. Allowed: Can be changed from the setting tool, HMI, and IEC 61850 client.

Name	Range	Default	Description
Allow setting of individual LN mode	 Prohibited From HMI/ setting tool only Allowed 	Prohibited	Allow local modes to be modified from setting tool, HMI and IEC61850. This parameter is visible only when "Allow setting of device mode" is enabled. Prohibited: Cannot be changed. From HMI/setting tool only: Can only be changed from the setting tool or HMI Allowed: Can be changed from the setting tool, HMI, and IEC 61850 client.

When enabled it is possible to change LDMod at Communication \rightarrow Protocols \rightarrow IEC61850.

Table. 5.3.1.1 - 322. Parameter for changing logical device mode.

Name	Range	Default	Description
Allow setting of device mode	 On Blocked Test Test/ Blocked Off 	On	Set mode of logical device. This parameter is visible only when <i>Allow setting of device</i> <i>mode</i> is enabled in <i>General</i> menu.

Each protection, control and monitoring function has its own logical node mode which can be changed individually. This parameter is found in the functions *Info*-menu. Each function also reports its behavior. Behavior of the function is influenced by the status of the device mode setting and the functions mode setting.

Table. 5.3.1.1 - 323. LNMod parameters.

Name	Range	Default	
LN mode	 On Blocked Test Test/ Blocked Off 	On	Set mode of function logical node. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.
LN behavior	 On Blocked Test Test/ Blocked Off 	On	Displays the mode of the function logical node. This parameter is visible only when <i>Allow setting of individual LN mode</i> is enabled in <i>General</i> menu.

5.3.1.2 GOOSE

Arcteq devices support both GOOSE publisher and GOOSE subscriber. GOOSE subscriber is enabled with the "GOOSE subscriber enable" parameter at *Communication* \rightarrow *Protocols* \rightarrow *IEC 61850/GOOSE*. The GOOSE inputs are configured using either the local HMI or the AQtivate software.

There are up to 64 GOOSE inputs available for use. Each of the GOOSE inputs also has a corresponding input quality signal which can also be used in internal logic. The quality is good, when the input quality status is "low" (that is, when the quality is marked as "0"). The value of the input quality can switch on as a result of a GOOSE time-out or a configuration error, for example. The status and quality of the various logical input signals can be viewed at the GOOSE IN status and GOOSE IN quality tabs at Control \rightarrow Device I/O \rightarrow Logical signals.

General GOOSE setting

The table below presents general settings for GOOSE publisher.

Table. 5.3.1.2 - 324. General GOOSE publisher settings.

Name	Range	Description
GOOSE control block 1 simulation bit	Disabled Default	The publisher will publish frames with simulation bit active if enabled.
GOOSE control block 2 simulation bit	(Default) Enabled 	For GOOSE simulation testing purposes.

The table below presents general settings for GOOSE subscriber

Table. 5.3.1.2 - 325. General GOOSE subscriber settings.

Name	Range	Description			
GOOSE subscriber enable	Disabled (Default)Enabled	Enables or disables GOOSE subscribing for the device.			
Not used GOOSE input Quality	 Bad quality (1) Good quality (0) 	Defines what state should GOOSE input quality signal to be in the logic if the input has been set as "disabled".			
Subscriber checks GoCBRef	 No (Default) 	When subscriber sees GOOSE frame it checks APPID and Conf. Rev but can			
Subscriber checks SqNum	Yes	also check if GoCBRef or SqNum match.			
Subscriber process simulation messages	 No (Default) Yes 	Subscriber can be set to process frames which are published with simulation bit high if enabled. The subscriber can still subscribe to non-simulated frames from a publisher until that a simulated frame is received from a publisher. From that point on, only simulated frames are accepted from that publisher. For other publishers, non-simulated frames are accepted normally (given no simulated frame is received from that publisher). This behavior ends when the setting is set back to No.			

GOOSE input settings

The table below presents the different settings available for all 64 GOOSE inputs.

These settings can be found from Communication \rightarrow Protocols \rightarrow IEC61850/GOOSE \rightarrow GOOSE Input Settings.

Name	Range	Description
In use	No (Default)Yes	Enables and disables the GOOSE input in question.
Application ID ("AppID")	0×00×3FFF	Defines the application ID that will be matched with the publisher's GOOSE control block.
Configuration revision ("ConfRev")	12 ³² -1	Defines the configuration revision that will be matched with the publisher's GOOSE control block.
Data index ("Dataldx")	099	Defines the data index of the value in the matched published frame. It is the status of the GOOSE input.
Nextldx is quality	No (Default)Yes	Selects whether or not the next received input is the quality bit of the GOOSE input.
Data type	 Boolean (Default) Integer Unsigned Floating point 	Selects the data type of the GOOSE input.
Control block reference	-	GOOSE subscriber can be set to check the GCB reference of the published GOOSE frame. This setting is automatically filled when Ed2 GOOSE configuration is done by importing cid file of the publisher.

GOOSE input descriptions

Each of the GOOSE inputs can be given a description. The user defined description are displayed in most of the menus:

- logic editor
- matrix
- block settings
- event history
- disturbance recordings
- etc.

These settings can be found from Control \rightarrow Device IO \rightarrow Logical Signals \rightarrow GOOSE IN Description.

Table. 5.3.1.2 - 327. GOOSE input user description.

Name	Range	Default	Description
User editable description GI x	131 characters		Description of the GOOSE input. This description is used in several menu types for easier identification.

GOOSE input values

Each of the GOOSE subscriber inputs (1...64) have indications listed in the following table. These indications can be found from *Communication* \rightarrow *Protocols* \rightarrow *IEC61850/GOOSE* \rightarrow *GOOSE input values.*

Table	5312-	328	GOOSE	input	indications
Table.	J.J. I.Z -	520.	OOOSL	input	indications

Name	Range	Description
Subscription status	Not ActiveActive	When active correct data received and passed to application.
Processing simulation message	FalseTrue	When true subscriber is processing simulation frames for this input (and rejecting non-simulated frames).
Needs commissioning	FalseTrue	When true configuration doesn't match the received frame (goCBRef, confRev).
Last received state number	04294967295	Status number (stNum) of the last data passed to application.
GOOSE IN X boolean value	01	GOOSE input 164 boolean value.
GOOSE IN X analog value	-3.4E+383.4E+38	GOOSE input 164 analog value.
GOOSE IN X quality	 Old data Failure Oscillatory Bad reference Out of range Overflow Invalid Reserved/ Questionable Operator blocked Test Substituted Inaccurate Inconsistent 	GOOSE input quality indication.
GOOSE IN X time	DD/MM/YYYY HH:MM:SS	Time when publisher sent GOOSE frame.
GOOSE IN X time fraction	04294967295 µs	Microseconds of the publisher GOOSE frame.

GOOSE events

GOOSE signals generate events from status changes. The user can select which event messages are stored in the main event buffer: ON, OFF, or both. The events triggered by the function are recorded with a time stamp and with process data values. The time stamp resolution is 1 ms.

Table. 5.3.1.2 - 329. GOOSE event

Event block name	Event name	Description
GOOSE1GOOSE2	GOOSE IN 164 ON/OFF	Status change of GOOSE input.
GOOSE3GOOSE4	GOOSE IN 164 quality Bad/ Good	Status change of GOOSE inputs quality.
GOOSE5GOOSE6	GOOSE Subscription status 164 Active/Not active	When active correct data received and passed to application.
GOOSE7GOOSE8	GOOSE Processing simulated messages 164 True/False	When true subscriber is processing simulation frames for this input (and rejecting non-simulated frames).
GOOSE9GOOSE10	GOOSE Subscription needs commissioning 164 True/ False	When true configuration doesn't match the received frame (goCBRef, confRev).

Setting the publisher

The configuration of the GOOSE publisher is done using the IEC 61850 tool in AQtivate (*Tools* \rightarrow *Communication* \rightarrow *IEC* 61850). Refer to *AQtivate-200 Instruction manual* for more information on how to set up GOOSE publisher.

5.3.2 Modbus/TCP and Modbus/RTU

The device supports both Modbus/TCP and Modbus/RTU communication. Modbus/TCP uses the Ethernet connection to communicate with Modbus/TCP clients. Modbus/RTU is a serial protocol that can be selected for the available serial ports.

The following Modbus function types are supported:

- Read multiple holding registers (function code 3)
- Write single holding register (function code 6)
- Write multiple holding registers (function code 16)
- Read/Write multiple registers (function code 23)

The following data can be accessed using both Modbus/TCP and Modbus/RTU:

- Device measurements
- Device I/O
- Commands
- Events
- Time

Once the configuration file has been loaded, the user can access the Modbus map of the device via the AQtivate software ($Tools \rightarrow Communication \rightarrow Modbus Map$). Please note that holding registers start from 1. Some masters might begin numbering holding register from 0 instead of 1; this will cause an offset of 1 between the device and the master. Modbus map can be edited with Modbus Configurator ($Tools \rightarrow Communication \rightarrow Modbus Configurator$).

Table. 5.3.2 - 330. Modbus/TCP settings.

Parameter	Range	Description
Enable Modbus/ TCP	DisabledEnabled	Enables and disables the Modbus/TCP on the Ethernet port.
IP port	065 535	Defines the IP port used by Modbus/TCP. The standard port (and the default setting) is 502.
Ethernet port	 All COM A Double Ethernet card 	Defines which ethernet ports are available for Modbus connection. Visible if any double ethernet option card is installed in the device.
Event read mode	 Get oldest available Continue previous connection New events only 	Get oldest event possible (Default) Continue with the event idx from previous connection Get only new events from connection time and forward.

Table. 5.3.2 - 331. Modbus/RTU settings.

Parameter	Range	Description
Slave address	1247	Defines the Modbus/RTU slave address for the unit.

Reading events

Modbus protocol does not support time-stamped events by standard definition. This means that every vendor must come up with their own definition how to transfer events from the device to the client. In AQ-200 series devices events can be read from HR17...HR22 holding registers. HR17 contains the event-code, HR18...20 contains the time-stamp in UTC, HR21 contains a sequential index and HR22 is reserved for future expansion. See the Modbus Map for more information. The event-codes and their meaning can be found from Event list (*Tools* \rightarrow *Events ang Logs* \rightarrow *Event list* in setting tool). The event-code in HR17 is 0 if no new events can be found in the device event-buffer. Every time HR17 is read from client the event in event-buffer is consumed and on following read operation the next un-read event information can be found from event registers. HR11...HR16 registers contains a back-up of last read event. This is because some users want to double-check that no events were lost

5.3.3 IEC 103

IEC 103 is the shortened form of the international standard IEC 60870-5-103. The AQ-200 series units are able to run as a secondary (slave) station. The IEC 103 protocol can be selected for the serial ports that are available in the device. A primary (master) station can then communicate with the AQ-200 device and receive information by polling from the slave device. The transfer of disturbance recordings is not supported.

NOTE: Once the configuration file has been loaded, the IEC 103 map of the device can be found in the AQtivate software (*Tools* \rightarrow *IEC* 103 map).

The following table presents the setting parameters for the IEC 103 protocol.

Name	Range	Step	Default	Description
Slave address	1254	1	1	Defines the IEC 103 slave address for the unit.
Measurement interval	060 000 ms	1 ms	2000 ms	Defines the interval for the measurements update.

5.3.4 IEC 101/104

The standards IEC 60870-5-101 and IEC 60870-5-104 are closely related. Both are derived from the IEC 60870-5 standard. On the physical layer the IEC 101 protocol uses serial communication whereas the IEC 104 protocol uses Ethernet communication. The IEC 101/104 implementation works as a slave in the unbalanced mode.

For detailed information please refer to the IEC 101/104 interoperability document (<u>www.arcteq.fi/</u> <u>downloads/</u> \rightarrow AQ-200 series \rightarrow Resources \rightarrow "AQ-200 IEC101 & IEC104 interoperability").

IEC 101 settings

Table. 5.3.4 - 332. IEC 101 settings.

Name	Range	Step	Default	Description
Common address of ASDU	065 534	1	1	Defines the common address of the application service data unit (ASDU) for the IEC 101 communication protocol.
Common address of ASDU size	12	1	2	Defines the size of the common address of ASDU.
Link layer address	065 534	1	1	Defines the address for the link layer.
Link layer address size	12	1	2	Defines the address size of the link layer.
Information object address size	23	1	3	Defines the address size of the information object.
Cause of transmission size	12	1	2	Defines the cause of transmission size.

IEC 104 settings

Table. 5.3.4 - 333. IEC 104 settings.

Name	Range	Step	Default	Description
IEC 104 enable	DisabledEnabled	-	Disabled	Enables and disables the IEC 104 communication protocol.
IP port	065 535	1	2404	Defines the IP port used by the protocol.

Name	Range	Step	Default	Description	
Ethernet port	 All COM A Double Ethernet card 	-	All	Defines which ethernet ports are available for Modbus connection. Visible if any double ethernet option card is installed in the device.	
Common address of ASDU	065 534	1	1	Defines the common address of the application service data unit (ASDU) for the IEC 104 communication protocol.	
APDU timeout (t1)	03600 s	1 s	0 s	The maximum amount of time the slave waits for a transmitted Application Protocol Data Unit (APDU) to be confirmed as recei by the master.	
Idle timeout (t3)	03600 s	1 s	0 s	The slave outstation can use a test fram to determine if the channel is still available after a prolonged period of communications inactivity. Test frame is sent at an interval specified here.	

Measurement scaling coefficients

The measurement scaling coefficients are available for the following measurements, in addition to the general measurement scaling coefficient:

Table. 5.3.4 - 334. Measurements with scaling coefficient settings.

Name	Range
Active energy	
Reactive energy	
Active power	
Reactive power	 No scaling 1/10
Apparent power	 1/100 1/1000 1/10 000
Power factor	 1/10 000 1/100 000 1/1 000 000
Frequency	• 10 • 10
Current	• 1000 • 10 000
Residual current	 100 000 1 000 000
Voltage	
Residual voltage	
Angle	

Deadband settings.

Table, 5.3.4 - 335.	Analog change deadband setting	ns.
10010. 0.0.1 0000.	r indiog ondrige deddband betting	<i>j</i> 0.

Name	Range	Step	Default	Description
General deadband	0.110.0%	0.1%	2%	Determines the general data reporting deadband settings.
Active energy deadband	0.11000.0kWh	0.1kWh	2kWh	
Reactive energy deadband	0.11000.0kVar	0.1kVar	2kVar	
Active power deadband	0.11000.0kW	0.1kW	2kW	
Reactive power deadband	0.11000.0kVar	0.1kVar	2kVar	
Apparent power deadband	0.11000.0kVA	0.1kVA	2kVA	
Power factor deadband	0.010.99	0.01	0.05	Determines the data reporting deadband
Frequency deadband	0.011.00Hz	0.01Hz	0.1Hz	settings for this measurement.
Current deadband	0.0150.00A	0.01A	5A	
Residual current deadband	0.0150.00A		0.2A	
Voltage deadband	0.015000.00V	0.01V	200V	
Residual voltage deadband	dual		200V	
Angle measurement deadband	0.15.0deg	0.1deg	1deg	
Integration time	010 000ms	1ms	-	Determines the integration time of the protocol. If this parameter is set to "0 ms", no integration time is in use.

5.3.5 SPA

The device can act as a SPA slave. SPA can be selected as the communication protocol for the RS-485 port (Serial COM1). When the device has a serial option card, the SPA protocol can also be selected as the communication protocol for the serial fiber (Serial COM2) ports or RS-232 (Serial COM3) port. Please refer to the chapter "<u>Construction and installation</u>" in the device manual to see the connections for these modules.

The data transfer rate of SPA is 9600 bps, but it can also be set to 19 200 bps or 38 400 bps. As a slave the device sends data on demand or by sequenced polling. The available data can be measurements, circuit breaker states, function starts, function trips, etc. The full SPA signal map can be found in AQtivate (*Tools* \rightarrow *SPA map*).

The SPA event addresses can be found at $Tools \rightarrow Events$ and $logs \rightarrow Event$ list.

Table. 5.3.5 - 336. SPA setting parameters.

Name	Range Description	
SPA address	1899	SPA slave address.
UTC time sync	DisabledEnabled	Determines if UTC time is used when synchronizing time. When disabled it is assumed time synchronization uses local time. If enabled it is assumed that UTC time is used. When UTC time is used the timezone must be set at <i>Commands</i> \rightarrow <i>Set time zone</i> .

NOTICE!

To access SPA map and event list, an .aqs configuration file should be downloaded from the device.

5.3.6 DNP3

DNP3 is a protocol standard which is controlled by the DNP Users Group (www.dnp.org). The implementation of a DNP3 slave is compliant with the DNP3 subset (level) 2, but it also contains some functionalities of the higher levels. For detailed information please refer to the DNP3 Device Profile document (www.arcteq.fi/downloads/ \rightarrow AQ-200 series \rightarrow Resources).

Settings

The following table describes the DNP3 setting parameters.

Table. 5.3.6 - 337. Settings.

Name	Range	Step	Default	Description	
Enable DNP3 TCP	DisabledEnabled	-	Disabled	Enables and disables the DNP3 TCP communication protocol when the Ethernet port is used for DNP3. If a serial port is used, the DNP3 protocol can be enabled from <i>Communication</i> \rightarrow <i>DNP3</i> .	
IP port	065 535	1	20 000	Defines the IP port used by the protocol.	
Ethernet port	 All COM A Double Ethernet card 	-	All	Defines which ethernet ports are available for Modbus connection. Visible if any double ethernet option card is installed in the device.	
Slave address	165 519	1	1	Defines the DNP3 slave address of the unit.	
Master address	165 534	1	2	Defines the address for the allowed master.	
Link layer time-out	060 000ms	1ms	0ms	Defines the length of the time-out for the link layer.	
Link layer retries	120	1	1	Defines the number of retries for the link layer.	
Diagnostic - Error counter	02 ³² -1	1	-	Counts the total number of errors in received and sent messages.	

Name	Range	Step	Default	Description
Diagnostic - Transmitted messages	02 ³² -1	1	-	Counts the total number of transmitted messages.
Diagnostic - Received messages	02 ³² -1	1	-	Counts the total number of received messages.

Default variations

Table. 5.3.6 - 338. E	Default variations.
-----------------------	---------------------

Name	Range	Default	Description
Group 1 variation (BI)	Var 1Var 2	Var 1	Selects the variation of the binary signal.
Group 2 variation (BI change)	Var 1Var 2	Var 2	Selects the variation of the binary signal change.
Group 3 variation (DBI)	Var 1Var 2	Var 1	Selects the variation of the double point signal.
Group 4 variation (DBI change)	Var 1Var 2	Var 2	Selects the variation of the double point signal.
Group 20 variation (CNTR)	 Var 1 Var 2 Var 5 Var 6 	Var 1	Selects the variation of the control signal.
Group 22 variation (CNTR change)	 Var 1 Var 2 Var 5 Var 6 	Var 5	Selects the variation of the control signal change.
Group 30 variation (AI)	 Var 1 Var 2 Var 3 Var 4 Var 5 	Var 5	Selects the variation of the analog signal.
Group 32 variation (Al change)	 Var 1 Var 2 Var 3 Var 4 Var 5 Var 7 	Var 5	Selects the variation of the analog signal change.

Setting the analog change deadbands

Table. 5.3.6 - 339. Analog change deadband settings.

Name	Range	Step	Default	Description
General deadband	0.110.0%	0.1%	2%	Determines the general data reporting deadband settings.
Active energy deadband	0.11000.0kWh	0.1kWh	2kWh	
Reactive energy deadband	0.11000.0kVar	0.1kVar	2kVar	
Active power deadband	0.11000.0kW	0.1kW	2kW	
Reactive power deadband	0.11000.0kVar	0.1kVar	2kVar	
Apparent power deadband	0.11000.0kVA	0.1kVA	2kVA	
Power factor deadband	0.010.99	0.01	0.05	Determines the data reporting deadband
Frequency deadband	0.011.00Hz	0.01Hz	0.1Hz	settings for this measurement.
Current deadband	0.0150.00A	0.01A	5A	
Residual current deadband	0.0150.00A		0.2A	
Voltage deadband	0.015000.00V	0.01V	200V	
Residual voltage deadband	al 0.01 5000.00V		200V	
Angle measurement deadband	0.15.0deg	0.1deg	1deg	
Integration time	010 000ms	1ms	0ms	Determines the integration time of the protocol. If this parameter is set to "0 ms", no integration time is in use.

5.3.7 Modbus I/O

The Modbus I/O protocol can be selected to communicate on the available serial ports. The Modbus I/O is actually a Modbus/RTU master implementation that is dedicated to communicating with serial Modbus/RTU slaves such as RTD input modules. Up to three (3) Modbus/RTU slaves can be connected to the same bus polled by the Modbus I/O implementation. These are named I/O Module A, I/O Module B and I/O Module C. Each of the modules can be configured using parameters in the following two tables.

Table. 5.3.7 - 340.	Module settings.
---------------------	------------------

Name	Range	Description
I/O module X address	0247	Defines the Modbus unit address for the selected I/O Module (A, B, or C). If this setting is set to "0", the selected module is not in use.

Name	Range	Description
Module x type	ADAM-4018+ADAM-4015	Selects the module type.
Channels in use	Channel 0Channel 7 (or None)	Selects the number of channels to be used by the module.

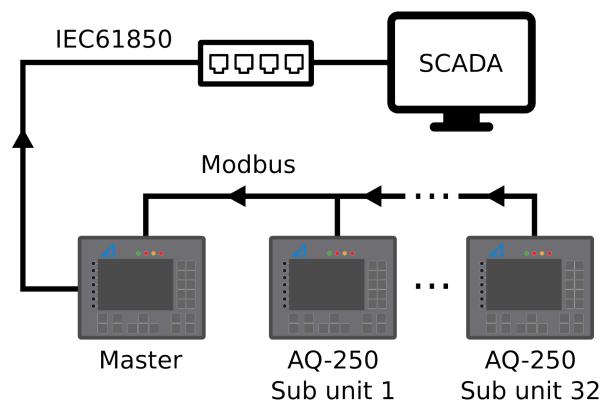
Table. 5.3.7 - 341. Channel settings.

Name	Range	Step	Default	Description	
Thermocouple type	 +/- 20mA 420mA Type J Type K Type T Type E Type R Type S 	-	420mA	Selects the thermocouple or the mA input connected to the I/O module. Types J, K, T and E are nickel-alloy thermocouples, while Types R and S are platinum/rhodium-alloy thermocouples.	
Input value -101.02 000.0		0.1	-	Displays the input value of the selected channel.	
Input status • Invalid • OK		-	-	Displays the input status of the selected channel.	

5.4 Analog fault registers

At Communication \rightarrow General I/O \rightarrow Analog fault registers the user can set up to twelve (12) channels to record the measured value when a protection function starts or trips. These values can be read in two ways: locally from this same menu, or through a communication protocol if one is in use.

The following table presents the setting parameters available for the 12 channels.


-	- 4	0.40			
lable.	5.4 -	342.	Fault	register	settings.

Name	Range	Step	Default	Description
Select record source	Not in use >, >>, >>>, >>> (IL1, IL2, IL3) d>, Id>>, Id>>>, Id>>> (IL1, IL2, IL2, IL3) 0>, 10>>, 10>>>, 10>>>> (I0) 0d>, 10d>>, 10d>>>, 10d>>>> (I0) 10d>, I0d>>, 10d>>>, 10d>>>> (I0) 10d>, FLX (Fault locator)	-	Not in use	Selects the protection function and its stage to be used as the source for the fault register recording. The user can choose between non-directional overcurrent, directional overcurrent, non-directional earth fault, directional earth fault, and fault locator functions.
Select record trigger	TRIP signalSTART signalSTART and TRIP signals	-	TRIP signal	Selects what triggers the fault register recording: the selected function's TRIP signal, its START signal, or either one.

Name	Range	Step	Default	Description
Recorded fault value	- 1000 000.001 000 000.00	0.01	-	Displays the recorded measurement value at the time of the selected fault register trigger.

5.5 Modbus Gateway

Figure. 5.5 - 168. Example setup of Modbus Gateway application.

Any AQ-250 device can be setup as a Modbus Gateway (i.e. master). Modbus Gateway device can import messages (measurements, status signals etc.) from external Arcteq and third-party devices. RS-485 serial communication port. Up to 32 sub units can be connected to an AQ-200 master unit. These messages can then be used for controlling logic in the master device, display the status in user created mimic. Binary signals can be reported forward to SCADA with IEC61850, IEC101, IEC103, IEC104, Modbus, DNP3 or SPA.

Arc protection relays AQ-103 and AQ-103 LV Modbus variant is designed to work as a sub unit with Modbus Gateway master. More details about AQ-103 and AQ-103 LV capabilities and how to set them up can be found in *AQ-103 Instruction manual* (arcteq.fi./downloads/). Also see application example at the end of this chapter.

Modbus Gateway and its basic settings can be found from *Communication* \rightarrow *Modbus Gateway*. General settings-menu displays the health of connection to each sub unit.

Table. 5.5 - 343. General settings

Name Range		Description			
Modbus Gateway mode	Disabled (Default)Enabled	Enables or disables Modbus Gateway.			
Modbus Gateway reconfigure	- Reconfigure	Setting this parameter to "Reconfigure" takes new settings into use. Parameter returns back to "-" automatically.			
Quality of Modbus Sub unit 132	 OK Old data Data questionable Modbus error Send fail Receive fail 	Quality of each connected sub unit.			

Imported signals

Modbus Gateway supports importing of measurements, bits, double bits, counters and integer signals. Up to 128 signals can be imported of each signal type with the exception of double bits (32).

Table. 5.5 - 344. Imported signals

Name	Range
Imported measurement 1-128	-3.4E+383.4E+38
Imported bit signal 1-128	01
Imported double bit data 1-32	03
Imported counter data 1-128	04294967295
Imported integer signal 1-128	-21474836482147483647

To assign the signals use Modbus Gateway editor (*Tools* \rightarrow *Communication* \rightarrow *Modbus Gateway*). Detailed description of this tool can be found in AQtivate 200 Instruction manual (arcteq.fi./downloads/).

All imported signals can be given a description. The description will be displayed in most of menus with the signal (logic editor, matrix, block settings etc.).

Name	Range	Default	Description
Describe measurement x		Acq. Meas x	
Describe bit signal x	131 characters	Acq. Bit x	User settable description for the signal. This description is used in several menu types for easier identification.
Describe doube bit signal x		Acq. Binary x	

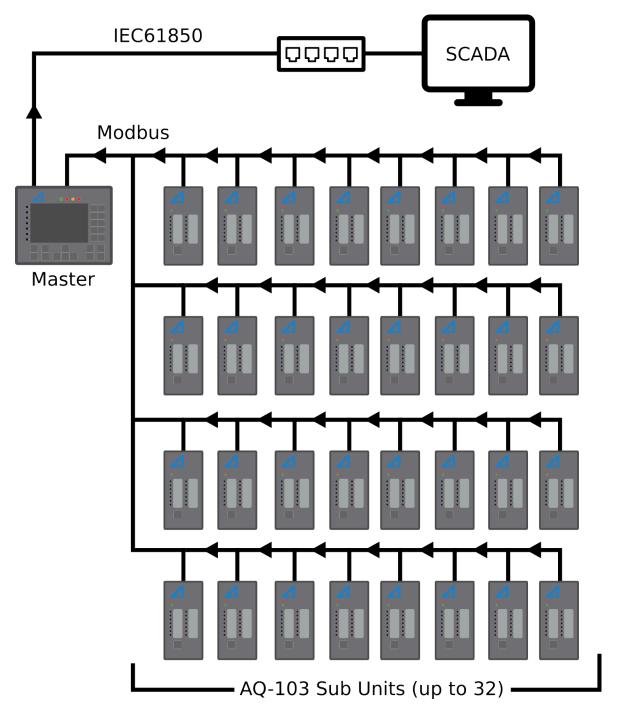
Table. 5.5 - 345. Imported signal user description.

Name	Range	Default	Description
Describe counter signal x		Acq. Counter x	
Describe integer signal x		Acq. Integer x	

Events

The Modbus Gateway generates events the status changes in imported bits and double bits. The user can select which event messages are stored in the main event buffer: ON, OFF, or both.

Event block name	Event names
MGWB1	Bit 1Bit 32 (ON, OFF)
MGWB2	Bit 33Bit 64 (ON, OFF)
MGWB3	Bit 65Bit 96 (ON, OFF)
MGWB4	Bit 97Bit 128 (ON, OFF)
MGWD1	Double Bit 1 Double bit 16 (ON/ON, OFF/OFF, ON/OFF, OFF/ON)
MGWD2	Double Bit 17 Double bit 32 (ON/ON, OFF/OFF, ON/OFF, OFF/ON)


Table. 5.5 - 346. Event messages

Connect AQ-103 devices to Modbus Gateway device

AQ-103 is a sophisticated microprocessor-based arc flash protection unit for arc light detection. AQ-103 acts as a sub-unit to AQ-110P (or, AQ-110F) in an AQ-100 arc protection system. It can also function as a stand-alone unit in light-only systems. AQ-103 provides communication through RS-485 and Modbus protocol as ordering options. Through the Modbus communication AQ-103 connects to an AQ-250 device for indication of exact fault location and to a SCADA system either trough a AQ-250 device or RTU.

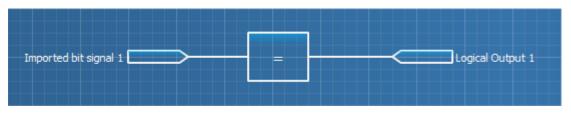

AQ-103 Modbus variant is able to report various signals like number of installed sensors, sensor activations, I/O activations etc. Holding registers of each signal can be found in the AQ-103 instruction manual.

Figure. 5.5 - 169. AQ-250 device can receive signals through modbus and use them to control logic of the device, create mimics and report the values to IEC 61850.

The signals received from AQ-103 device can be used for fault indications on AQ-200 device and for reporting the signals forward with IEC 61850 or other communication protocol. Fault indication can be done by setting up an alarm display for each incoming signal or by building a mimic.

Figure. 5.5 - 170. To report imported bit signals to SCADA the signals must be connected to a logical output.

© Arcteq Relays Ltd IM00035

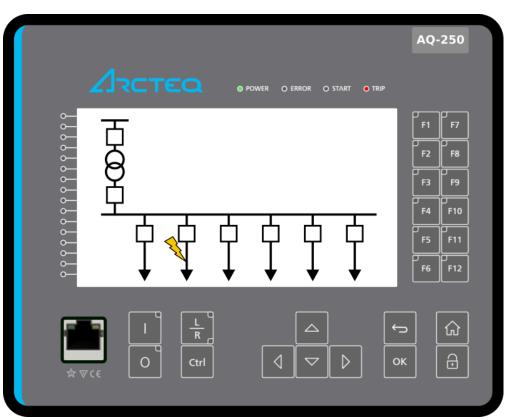
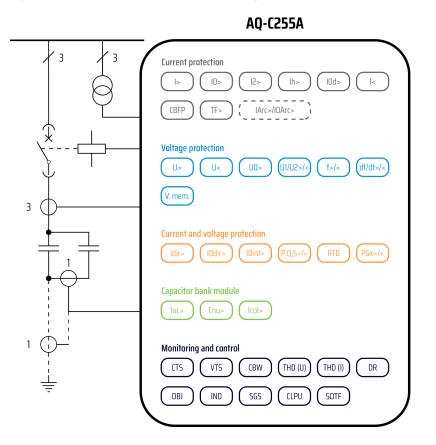
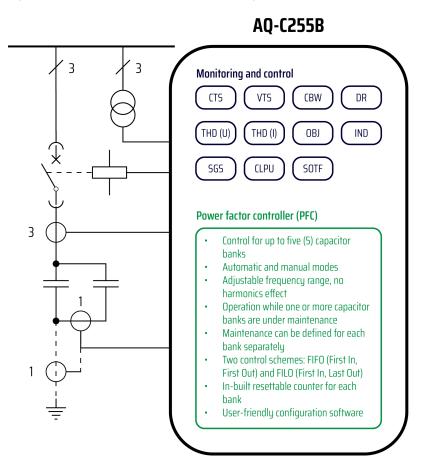
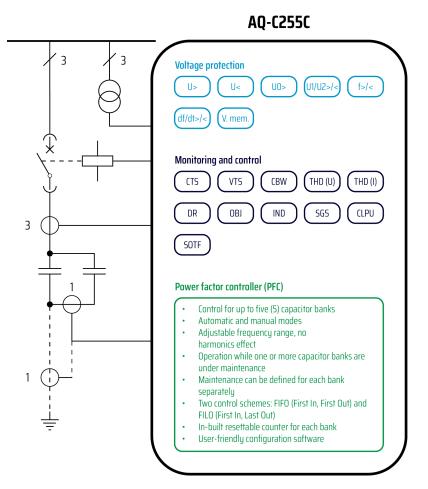
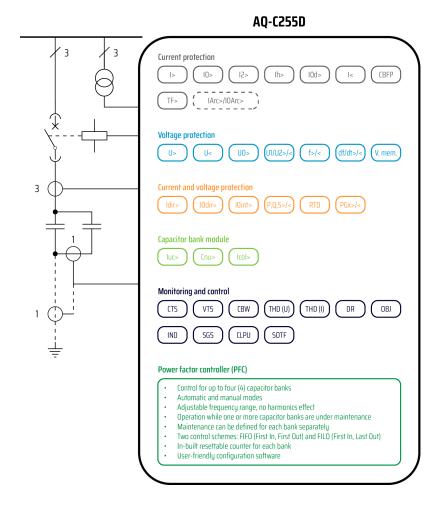



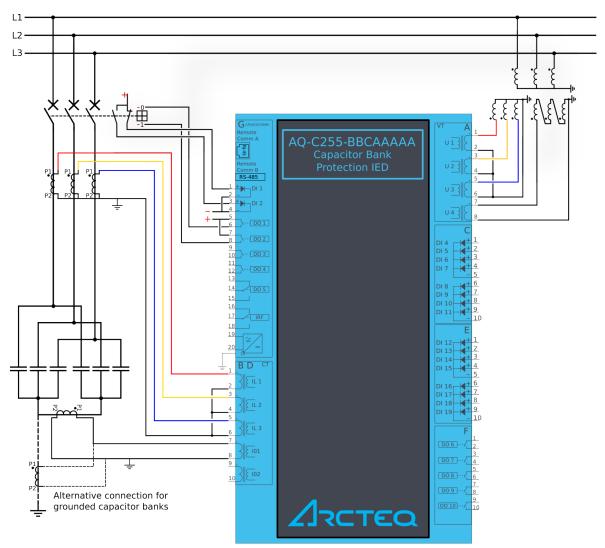
Figure. 5.5 - 171. Example mimic where sensor activation location is indicated with a symbol.

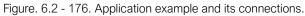

6 Connections and application examples


6.1 Connections of AQ-C255


Figure. 6.1 - 172. AQ-C255A function block diagram.



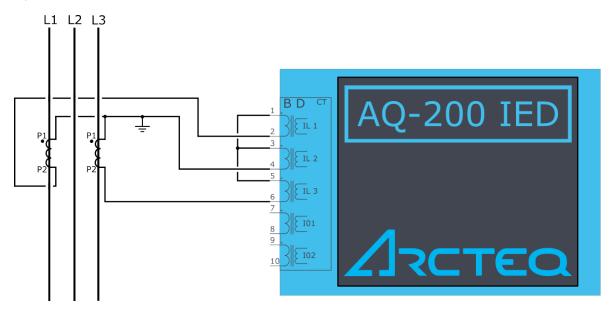




6.2 Application example and its connections

This chapter presents an application example for the capacitor bank protection relay.

Since three line-to-line voltages and the zero sequence voltage (U4) are connected, this application uses the voltage measurement mode "3LN+U0" (see the image below). Additionally, the three phase currents and the I01 residual current are connected. The digital inputs are connected to indicate the breaker status, while the digital outputs are used for breaker control.



6.3 Two-phase, three-wire ARON input connection

This chapter presents the two-phase, three-wire ARON input connection for any AQ-200 series device with a current transformer. The example is for applications with protection CTs for just two phases. The connection is suitable for both motor and feeder applications.

The ARON input connection can measure the load symmetrically despite the fact that one of the CTs is missing from the installation. Normally, Phase 2 does not have a current transformer installed as an external fault is much more likely to appear on Lines 1 or 3.

A fault between Line 2 and the earth cannot be detected when the ARON input connection is used. In order to detect an earth fault in Phase 2, a cable core CT must be used.

6.4 Trip circuit supervision (95)

Trip circuit supervision is used to monitor the wiring from auxiliary power supply, through the device's digital output, and all the way to the open coil of the breaker. It is recommended to supervise the health of the trip circuit when breaker is closed.

Trip circuit supervision with one digital input and one non-latched trip output

The figure below presents an application scheme for trip circuit supervision with one digital input and a non-latched trip output. With this connection the current keeps flowing to the open coil of the breaker via the breaker's closing auxiliary contacts (52b) even after the circuit breaker is opened. This requires a resistor which reduces the current: this way the coil is not energized and the relay output does not need to cut off the coil's inductive current.

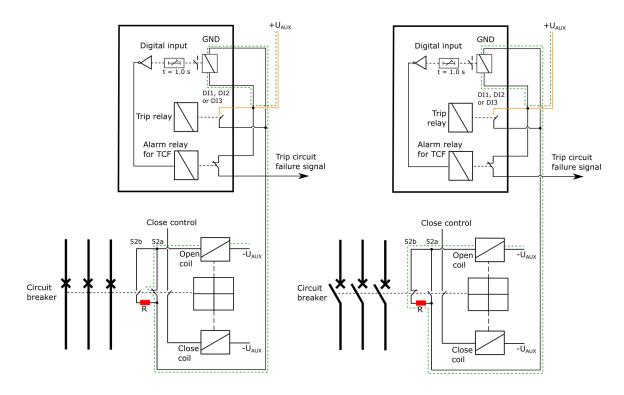


Figure. 6.4 - 178. Trip circuit supervision with one DI and one non-latched trip output.

Note that the digital input that monitors the circuit is normally closed, and the same applies to the alarm relay if one is used. For monitoring and especially trip circuit supervision purposes it is recommended to use a normally closed contact to confirm the wiring's condition. An active digital input generates a less than 2 mA current to the circuit, which is usually small enough not to make the breaker's open coil operate.

When the trip relay is controlled and the circuit breaker is opening, the digital input is shorted by the trip contact as long as the breaker opens. Normally, this takes about 100 ms if the relay is non-latched. A one second activation delay should, therefore, be added to the digital input. An activation delay that is slightly longer than the circuit breaker's operations time should be enough. When circuit breaker failure protection (CBFP) is used, adding its operation time to the digital input activation time is useful. The whole digital input activation time is, therefore, $t_{DI} = t_{CB} + t_{IEDrelease} + t_{CBFP}$.

The image below presents the necessary settings when using a digital input for trip circuit supervision. The input's polarity must be NC (normally closed) and a one second delay is needed to avoid nuisance alarm while the circuit breaker is controlled open.

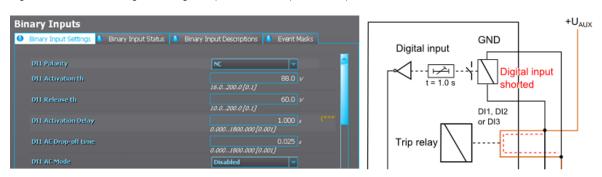
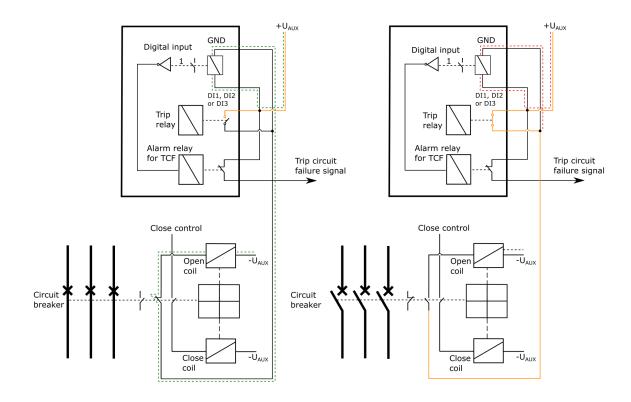


Figure. 6.4 - 179. Settings for a digital input used for trip circuit supervision.

Non-latched outputs are seen as hollow circles in the output matrix, whereas latched contacts are painted. See the image below of an output matrix where a non-latched trip contact is used to open the circuit breaker.

Figure. 6.4 - 180. Non-latched trip contact.

Inputs	U OUT1	U OUT2	U OUT3	U OUT4	. Ų . OUT5
I> START (General)					
I> START(A)					
I> START(B)					
I> START(C)					
I> TRIP (General)	÷				
I> TRIP(A)					
I> TRIP(B)					
I> TRIP(C)					
I> BLOCKED					

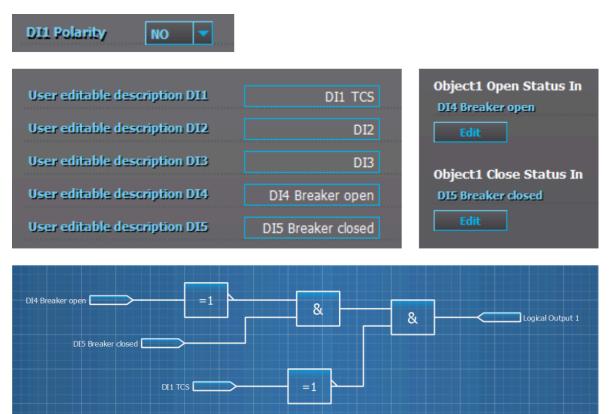

When the auto-reclosing function is used in feeder applications, the trip output contacts must be nonlatched. Trip circuit supervision is generally easier and more reliable to build with non-latched outputs.

The open coil remains energized only as long as the circuit breaker is opened and the output releases. This takes approximately 100 ms depending on the size and type of the breaker. When the breaker opens, the auxiliary contacts open the inductive circuit; however, the trip contact does not open at the same time. The device's output relay contact opens in under 50 ms or after a set release delay that takes place after the breaker is opened. This means that the open coil is energized for a while after the breaker has already opened. The coil could even be energized a moment longer if the circuit breaker failure protection has to be used and the incomer performs the trip.

Trip circuit supervision with one digital input and one connected, non-latched trip output

There is one main difference between non-latched and latched control in trip circuit supervision: when using the latched control, the trip circuit (in an open state) cannot be monitored as the digital input is shorted by the device's trip output.

Figure. 6.4 - 181. Trip circuit supervision with one DI and one latched output contact.



The trip circuit with a latched output contact can be monitored, but only when the circuit breaker's status is "Closed". Whenever the breaker is open, the supervision is blocked by an internal logic scheme. Its disadvantage is that the user does not know whether or not the trip circuit is intact when the breaker is closed again.

The following logic scheme (or similar) blocks the supervision alarm when the circuit breaker is open. The alarm is issued whenever the breaker is closed and whenever the inverted digital input signal ("TCS") activates. A normally closed digital input activates only when there is something wrong with the trip circuit and the auxiliary power goes off. Logical output can be used in the output matrix or in SCADA as the user wants.

The image below presents a block scheme when a non-latched trip output is not used.

Figure. 6.4 - 182. Example block scheme.

7 Construction and installation

7.1 Construction

AQ-X255 is a member of the modular and scalable AQ-200 series, and it includes eleven (11) configurable and modular add-on card slots. As a standard configuration the device includes the CPU module (which consists of the CPU, a number of inputs and outputs, and the power supply) as well as one separate voltage measurement module and one separate current measurement module.

The images below present the modules of both the non-optioned model (AQ-X255-XXXXXX-AAAAAAAAAA) and a partially optioned model (AQ-X255-XXXXXX-BBBBBCAAAAJ).

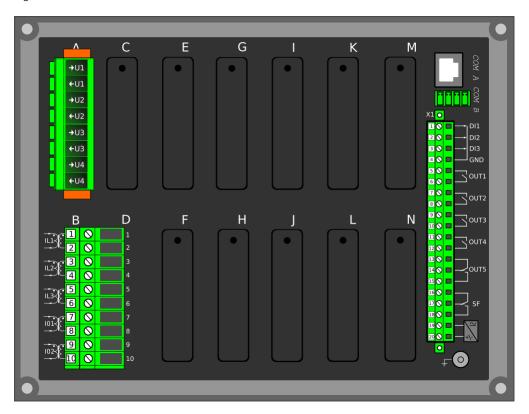
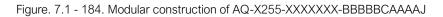



Figure. 7.1 - 183. Modular construction of AQ-X255-XXXXXXAAAAAAAAAAAA

G Κ Δ C Ε Μ 0 0 0 +U1 $\bigcirc 1$ 01 \bigcirc 1 **+**U1 +U2 X1 0 **+**U2 ■ 🛇 5 5 5 $1 \bigcirc$ **6** DI16 DI2 ÷U3 **0**7 **0**7 **0**7 DI3 +U3 DI18 DI10 40 GND **–** 🛇 9 **•** 🛇 9 **→**U4 5 🛇 🗖 こоп 60 **←**U4 7 🛇 🗖 8 🔿 🗆 9 🛇 🗖 $\overline{\}$ OUT Ν D F н B \oslash 1 0 0 шì O_1 2 \oslash DI20 DI36 **D** 2 \bigcirc DI22 DI38 \bigcirc DI2 DI3 \bigcirc \bigcirc DI24 DI4(DI41 \bigcirc DI2 DI4 8 \bigcirc DI2 \bigcirc 9 9 10 \oslash

The modular structure of AQ-X255 allows for scalable solutions for different application requirements. In non-standard configurations slots from C to N accept all available add-on modules, such as digital I/O modules, integrated arc protection and other special modules. The only difference between the slots affecting device scalability is that Slots M and N both also support communication options.

Start-up scan searches for modules according to their type designation code. If the module content is not what the device expects, the device issues a hardware configuration error message. In field upgrades, therefore, add-on modules must be ordered from Arcteq Relays Ltd. or its representative who can then provide the module with its corresponding unlocking code to allow the device to operate correctly once the hardware configuration has been upgraded.

When an I/O module is inserted into the device, the module location affects the naming of the I/O. The I/O scanning order in the start-up sequence is as follows: the CPU module I/O, Slot C, Slot E, Slot F, and so on. This means that the digital input channels DI1, DI2 and DI3 as well as the digital output channels OUT1, OUT2, OUT3, OUT4 and OUT5 are always located in the CPU module. If additional I/O cards are installed, their location and card type affect the I/O naming.

The figure below presents the start-up hardware scan order of the device as well as the I/O naming principles.

Figure. 7.1 - 185. AQ-X255 hardware scanning and I/O naming principles.

2. Scan	Slot C 4. Scan	Slot E 6. Scan	Slot G 8. Scan	Slot I 10. Scan	Slot K 12. Scan	Slot M 14. Scan	CPU
	↓ ↓						1. Scan
3. Scan	5. Scan	Slot F 7. Scan	Slot H 9. Scan	Slot J 11. Scan	Slot L 13. Scan	Slot N 15. Scan	
							¥

1. Scan

The start-up system; detects and self-tests the CPU module, voltages, communication and the I/ O; finds and assigns "DI1", "DI2", "DI3", "OUT1", "OUT2", "OUT3", "OUT4" and "OUT5".

2. Scan

Scans Slot A and finds the four channels of the VT module (fixed for AQ-X255). If the VTM is not found, the device issues an alarm.

3. Scan

Scans Slot B, which should always remain empty in AQ-X255 devices. If it is not empty, the device issues an alarm.

4. Scan

Scans Slot C, and moves to the next slot if Slot C is empty. If the scan finds an 8DI module (that is, a module with eight digital inputs), it reserves the designations "DI4", "DI5", "DI6", "DI7", "DI8", "DI9", "DI9", "DI10" and "DI11" to this slot. If the scan finds a DO5 module (that is, a module with five digital outputs), it reserves the designations "OUT6", "OUT7", "OUT8", "OUT9" and "OUT10" to this slot. The I/O is then added if the type designation code (e.g. AQ-P215-PH0AAAA-BBC) matches with the existing modules in the device. If the code and the modules do not match, the device issues and alarm. An alarm is also issued if the device expects to find a module here but does not find one.

5. Scan

Scans Slot D and finds the five channels of the CT module (fixed for AQ-X255). If the CTM is not found, the device issues an alarm.

6. Scan

Scans Slot E, and moves to the next slot if Slot E is empty. If the scan finds an 8DI module, it reserves the designations "DI4", "DI5", "DI6", "DI7", "DI8", "DI9", "DI10" and "DI11" to this slot. If Slot C also has an 8DI module (and therefore has already reserved these designations), the device reserves the designations "DI12", "DI13", "DI14", "DI15", "DI16", "DI17", "DI18" and "DI19" to this slot. If the scan finds a 5DO module, it reserves the designations "OUT6", "OUT7", "OUT8", "OUT9" and "OUT10" to this slot. Again, if Slot C also has a 5DO and has therefore already reserved these designations, the device reserves the designations "OUT11", "OUT12", "OUT13", "OUT14" and "OUT15" to this slot. If the scan finds the arc protection module, it reserves the sensor channels ("S1", "S2", "S3", "S4"), the high-speed outputs ("HSO1", "HSO2"), and the digital input channel ("ArcBI") to this slot.

7. -15. Scan

A similar operation to Scan 6 (checks which designations have been reserved by modules in previous slots and numbers the new ones accordingly).

Thus far this chapter has only explained the installation of I/O add-on cards to the option module slots. This is because all other module types are treated in a same way. For example, when an additional communication port is installed into the upper port of the communication module, its designation is Communication port 3 or higher, as Communication ports 1 and 2 already exist in the CPU module (which is scanned, and thus designated, first). After a communication port is detected, it is added into the device's communication space and its corresponding settings are enabled.

The partially optioned example case of AQ-X255-XXXXX-BBBBBCAAAAJ (the first image pair, on the right) has a total of 43 digital input channels available: three (DI1...DI3) in the CPU module, and the rest in Slots C...H in groups of eight. It also has a total of 10 digital output channels available: five (DO1...DO5) in the CPU module, and five (DO6...DO10) in Slot I. Additionally, there is a double (LC) fiber Ethernet communication option card installed in Slot N. These same principles apply to all non-standard configurations in the AQ-X255 devices.

7.2 CPU module

Figure. 7.2 - 186. CPU module.

Connector	Description
COM A	Communication port A, or the RJ-45 port. Used for the setting tool connection and for IEC 61850, Modbus/TCP, IEC 104, DNP3 and station bus communications.
СОМ В	Communication port B, or the RS-485 port. Used for the SCADA communications for the following protocols: Modbus/RTU, Modbus I/O, SPA, DNP3, IEC 101 and IEC 103. The pins have the following designations: Pin 1 = DATA +, Pin 2 = DATA –, Pin 3 = GND, Pins 4 & 5 = Terminator resistor enabled by shorting.

Connector	Description				
X1-1	Digital input 1, nominal threshold voltage 24 V, 110 V or 220 V.				
X1-2	Digital input 2, nominal threshold voltage 24 V, 110 V or 220 V.				
X1-3	Digital input 3, nominal threshold voltage 24 V, 110 V or 220 V.				
X1-4	Common GND for digital inputs 1, 2 and 3.				
X1-5:6	Output relay 1, with a normally open (NO) contact.				
X1-7:8	Output relay 2, with a normally open (NO) contact.				
X1-9:10	Output relay 3, with a normally open (NO) contact.				
X1-11:12	Output relay 4, with a normally open (NO) contact.				
X1-13:14:15	Signaling relay 5, with a changeover contact. Not to be used in trip coil control.				
X1-16:17:18	System fault's signaling relay, with a changeover contact. Pins 16 and 17 are closed when the unit has a system fault or is powered OFF. Pins 16 and 18 are closed when the unit is powered ON and there is no system fault.				
X1-19:20	Power supply IN. Either 80265 VAC/DC (model A; order code "H") or 1875 DC (model B; order code "L"). Positive side (+) to Pin 20.				
GND	The device's earthing connector.				

By default, the CPU module (combining the CPU, the I/O and the power supply) includes two standard communication ports and the device's basic digital I/O.

The digital output controls are also set by the user with software. The digital outputs are controlled in 5 ms program cycles. All output contacts are mechanical. The rated voltage of the NO/NC outputs is 250 VAC/DC.

The auxiliary voltage is defined in the ordering code: the available power supply models available are A (80...265 VAC/DC) and B (18...75 DC). The power suppy's minimum allowed bridging time for all voltage levels is above 150 ms. The power supply's maximum power consumption is 15 W. The power supply allows a DC ripple of below 15 % and the start-up time of the power supply is below 5 ms. For further details, please refer to the "Auxiliary voltage" chapter in the "Technical data" section of this document.

Digital inputs

The current consumption of the digital inputs is 2 mA when activated, while the range of the operating voltage is 24 V/110 V/220 V depending on the ordered hardware. All digital inputs are scanneed in 5 ms program cycles. Their pick-up and release thresholds depend on the selection of the order code. Their delays and NO/NC selection, however, can be set with software.

The settings described in the table below can be found at *Control* \rightarrow *Device* $I/O \rightarrow$ *Digital input settings* in the device settings.

Table. 7.2 - 347. Digital input settings.

Name	Range	Step	Default	Description
DIx Polarity	 NO (Normally open) NC (Normally closed) 	-	NO	Selects whether the status of the digital input is 1 or 0 when the input is energized.
Dlx Activation delay	0.0001800.000 s	0.001 s	0.000 s	Defines the delay for the status change from 0 to 1.
Dlx Drop- off time	0.0001800.000 s	0.001 s	0.000 s	Defines the delay for the status change from 1 to 0.
DIx AC mode	DisabledEnabled	-	Disabled	Selects whether or not a 30-ms deactivation delay is added to account for alternating current.

Digital input and output descriptions

CPU card digital inputs and outputs can be given a description. The user defined description are displayed in most of the menus:

- logic editor
- matrix
- block settings
- event history
- disturbance recordings
- etc.

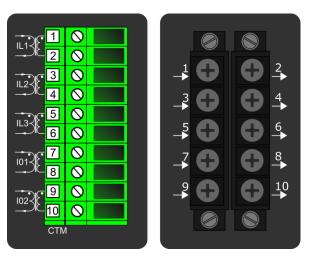
Table. 7.2 - 348. Digital input and output user description.

Name	Range	Default	Description
User editable description DIx	131	DIx	Description of the digital input. This description is used in several menu types for easier identification.
User editable description OUTx	characters	OUTx	Description of the digital output. This description is used in several menu types for easier identification.

NOTICE!

After editing user descriptions the event history will start to use the new description only after resetting the HMI. HMI can be reset from *General* \rightarrow *Device info* \rightarrow *HMI restart*.

Scanning cycle


All digital inputs are scanned in a 5 ms cycle, meaning that the state of an input is updated every 0...5 milliseconds. When an input is used internally in the device (either in group change or logic), it takes additional 0...5 milliseconds to operate. Theoretically, therefore, it takes 0...10 milliseconds to change the group when a digital input is used for group control or a similar function. In practice, however, the delay is between 2...8 milliseconds about 95 % of the time. When a digital input is connected directly to a digital output (T1...Tx), it takes an additional 5 ms round. Therefore, when a digital input controls a digital output internally, it takes 0...15 milliseconds in theory and 2...13 milliseconds in practice.

NOTICE! The mechanical delay of the relay is **not** included in these approximations!

7.3 Current measurement module

Figure. 7.3 - 187. Module connections with standard and ring lug terminals.

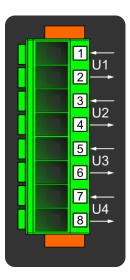
Connector	Description		
CTM 1-2	Phase current measurement for phase L1 (A).		
CTM 3-4	Phase current measurement for phase L2 (B).		
CTM 5-6	Phase current measurement for phase L3 (C).		
CTM 7-8	Coarse residual current measurement 101.		
CTM 9-10	Fine residual current measurement 102.		

A basic current measurement module with five channels includes three-phase current measurement inputs as well as coarse and fine residual current inputs. The CT module is available with either standard or ring lug connectors.

The current measurement module is connected to the secondary side of conventional current transformers (CTs). The nominal current for the phase current inputs is 5 A. The input nominal current can be scaled for secondary currents of 1...10 A. The secondary currents are calibrated to nominal currents of 1 A and 5 A, which provide ± 0.5 % inaccuracy when the range is $0.005...4 \times I_n$.

The measurement ranges are as follows:

- Phase currents 25 mA...250 A (RMS)
- Coarse residual current 5 mA...150 A (RMS)
- Fine residual current 1 mA...75 A (RMS)


The characteristics of phase current inputs are as follows:

- The angle measurement inaccuracy is less than \pm 0.2 degrees with nominal current.
- The frequency measurement range of the phase current inputs is 6...1800 Hz with standard hardware.
- The quantization of the measurement signal is applied with 18-bit AD converters, and the sample rate of the signal is 64 samples/cycle when the system frequency ranges from 6 Hz to 75 Hz.

For further details please refer to the "Current measurement" chapter in the "Technical data" section of this document.

7.4 Voltage measurement module

Figure. 7.4 - 188. Voltage measurement module.

Connector	Description		
VTM 1-2	Configurable voltage measurement input U1.		
VTM 3-4	Configurable voltage measurement input U2.		
VTM 5-6	Configurable voltage measurement input U3.		
VTM 7-8	Configurable voltage measurement input U4.		

A basic voltage measurement module with four channels includes four voltage measurement inputs that can be configured freely.

The voltage measurement module is connected to the secondary side of conventional voltage transformers (VTs) or directly to low-voltage systems secured by fuses. The nominal voltage can be set between 100...400 V. Voltages are calibrated in a range of 0...240 V, which provides \pm 0.2 % inaccuracy in the same range.

The voltage input characteristics are as follows:

- The measurement range is 0.5...480.0 V per channel.
- The angle measurement inaccuracy is less than \pm 0.5 degrees within the nominal range.
- The frequency measurement range of the voltage inputs is 6...1800 Hz with standard hardware.
- The quantization of the measurement signal is applied with 18-bit AD converters, and the sample rate of the signal is 64 samples/cycle when the system frequency ranges from 6 Hz to 75 Hz.

For further details please refer to the "Voltage measurement" chapter in the "Technical data" section of this document.

7.5 Option cards

7.5.1 Digital input module (optional)

Figure. 7.5.1 - 189. Digital input module (DI8) with eight add-on digital inputs.

	0	
DI1[*	\otimes	1
DI2 🕇	\otimes	2
DI3 +	\otimes	3
DI4 🕇	\otimes	4
	\otimes	5
DI5 _I ≁	\otimes	6
D16 +	\otimes	7
DI7 🕇	\otimes	8
DI8 -	\otimes	9
	\otimes	10
	0	

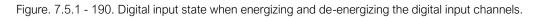
Connector	Description (x = the number of digital inputs in other modules that preceed this one in the configuration)			
X 1	Dlx + 1			
X 2	Dlx + 2			
Х 3	Dlx + 3			
X 4	Dlx + 4			
X 5	Common earthing for the first four digital inputs.			
X 6	Dlx + 5			
X 7	Dlx + 6			
X 8	Dlx + 7			
Х9	Dlx + 8			
X 10	Common earthing for the other four digital inputs.			

The DI8 module is an add-on module with eight (8) galvanically isolated digital inputs. This module can be ordered directly to be installed into the device in the factory, or it can be upgraded in the field after the device's original installation when required. The properties of the inputs in this module are the same as those of the inputs in the main processor module. The current consumption of the digital inputs is 2 mA when activated, while the range of the operating voltage is from 0...265 VAC/DC. The activation and release thresholds are set in the software and the resolution is 1 V. All digital inputs are scannced in 5 ms program cycles, and their pick-up and release delays as well as their NO/NC selection can be set with software.

For the naming convention of the digital inputs provided by this module please refer to the chapter titled "Construction and installation".

For technical details please refer to the chapter titled "Digital input module" in the "Technical data" section of this document.

Setting up the activation and release delays


The settings described in the table below can be found at *Control* \rightarrow *Device I/O* \rightarrow *Digital input settings* in the device settings.

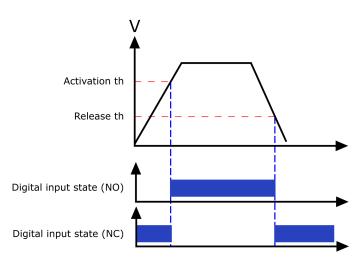

Name	Range	Step	Default	Description
Dlx Polarity	 NO (Normally open) NC (Normally closed) 	-	NO	Selects whether the status of the digital input is 1 or 0 when the input is energized.
DIx Activation threshold	16.0200.0 V	0.1 V	88 V	Defines the activation threshold for the digital input. When "NO" is the selected polarity, the measured voltage exceeding this setting activates the input. When "NC" is the selected polarity, the measured voltage exceeding this setting deactivates the input.
DIx Release threshold	10.0200.0 V	0.1 V	60V	Defines the release threshold for the digital input. When "NO" is the selected polarity, the measured voltage below this setting deactivates the input. When "NC" is the selected polarity, the measured voltage below this setting activates the input.
Dlx Activation delay	0.0001800.000 s	0.001 s	0.000 s	Defines the delay when the status changes from 0 to 1.
DIx Drop- off time	0.0001800.000 s	0.001 s	0.000 s	Defines the delay when the status changes from 1 to 0.
DIx AC Mode	DisabledEnabled	-	Disabled	Selects whether or not a 30-ms deactivation delay is added to take the alternating current into account. The "DIx Release threshold" parameter is hidden and forced to 10 % of the set "DIx Activation threshold" parameter.
Dlx Counter	02 ³² –1	1	0	Displays the number of times the digital input has changed its status from 0 to 1.
Dlx Clear counter	• - • Clear	-	-	Resets the DIx counter value to zero.

Table. 7.5.1 - 349. Digital input settings of DI8 module.

The user can set the activation threshold individually for each digital input. When the activation and release thresholds have been set properly, they will result in the digital input states to be activated and released reliably. The selection of the normal state between normally open (NO) and normally closed (NC) defines whether or not the digital input is considered activated when the digital input channel is energized.

The diagram below depicts the digital input states when the input channels are energized and deenergized.

Digital input descriptions

Option card inputs can be given a description. The user defined description are displayed in most of the menus:

- logic editor
- matrix
- block settings
- event history
- disturbance recordings
- etc.

Table. 7.5.1 - 350. Digital input user description.

Name	Range	Default	Description
User editable description Dlx	131 characters	DIx	Description of the digital input. This description is used in several menu types for easier identification.

NOTICE!

After editing user descriptions the event history will start to use the new description only after resetting the HMI. HMI can be reset from *General* \rightarrow *Device info* \rightarrow *HMI restart*.

Digital input voltage measurements

Digital input option card channels measure voltage on each channel. The measured voltage can be seen at *Control* \rightarrow *Device IO* \rightarrow *Digital inputs* \rightarrow *Digital input voltages*.

Table. 7.5.1 - 351.	Digital input channe	l voltage measurement.

Name	Range	Step	Description
DIx Voltage now	0.000275.000 V	0.001 V	Voltage measurement of a digital input channel.

7.5.2 Digital output module (optional)

Figure. 7.5.2 - 191. Digital output module (DO5) with five add-on digital outputs.

	0	
55	00	1
бĹ	\oslash	2
	\oslash	3
	00	4
7 13	\odot	5
ЪС	\odot	6
74	\odot	7
DUT5 OUT4	\otimes	8
JT5	\oslash	9
ЪС	\odot	10
	0	
		_

Connector	Description
X 1–2	OUTx + 1 (1 st and 2 nd pole NO)
X 3–4	OUTx + 2 (1 st and 2 nd pole NO)
X 5–6	OUTx + 3 (1 st and 2 nd pole NO)
X 7–8	OUTx + 4 (1 st and 2 nd pole NO)
X 9–10	OUTx + 5 (1 st and 2 nd pole NO)

The DO5 module is an add-on module with five (5) digital outputs. This module can be ordered directly to be installed into the device in the factory, or it can be upgraded in the field after the device's original installation when required. The properties of the outputs in this module are the same as those of the outputs in the main processor module. The user can set the digital output controls with software. All digital outputs are scanned in 5 ms program cycles, and their contacts are mechanical in type. The rated voltage of the NO/NC outputs is 250 VAC/DC.

For the naming convention of the digital inputs provided by this module please refer to the chapter titled "Construction and installation".

For technical details please refer to the chapter titled "Digital output module" in the "Technical data" section of this document.

Digital output descriptions

Option card outputs can be given a description. The user defined description are displayed in most of the menus:

- logic editor
- matrix

- block settings
- event history
- disturbance recordings
- etc.

Table. 7.5.2 - 352. Digital output user description.

Name	Range	Default	Description
User editable description OUTx	131 characters	OUTx	Description of the digital output. This description is used in several menu types for easier identification.

NOTICE!

After editing user descriptions the event history will start to use the new description only after resetting the HMI. HMI can be reset from *General* \rightarrow *Device info* \rightarrow *HMI restart*.

7.5.3 Point sensor arc protection module (optional)

Figure. 7.5.3 - 192. Arc protection module.

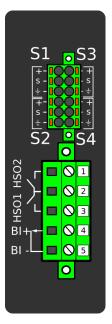


Table. 7.5.3 - 353. Module connections.

Connector	Description		
S1			
S2			
S3	Light sensor channels 14 with positive ("+"), sensor ("S") and earth connectors.		
S4			
X 1	HSO2 (+, NO)		
X 2	Common battery positive terminal (+) for the HSOs.		

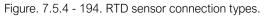
Connector	Description
Х 3	HSO1 (+, NO)
X 4	Binary input 1 (+ pole)
X 5	Binary input 1 (– pole)

The arc protection module is an add-on module with four (4) light sensor channels, two (2) high-speed outputs and one (1) binary input. This module can be ordered directly to be installed into the device in the factory, or it can be upgraded in the field after the device's original installation when required. If even one of the sensor channels is connected incorrectly, the channel does not work. Each channel can have up to three (3) light sensors serially connected to it. The user can choose how many of the channels are in use.

The high-speed outputs (HSO1 and HSO2) operate only with a DC power supply. The battery's positive terminal (+) must be wired according to the drawing. The NO side of the outputs 1 or 2 must be wired through trip coil to the battery's negative terminal (–). The high-speed outputs can withstand voltages up to 250 VDC. The operation time of the high-speed outputs is less than 1 ms. For further information please refer to the chapter titled "Arc protection module" in the "Technical data" section of this manual.

The rated voltage of the binary input is 24 VDC. The threshold picks up at \geq 16 VDC. The binary input can be used for external light information or for similar applications. It can also be used as a part of various ARC schemes. Please note that the binary input's delay is 5...10ms.

NOTICE!


BI1, HSO1 and HSO2 are not visible in the *Binary inputs* and *Binary outputs* menus (*Control* \rightarrow *Device I/O*), they can only be programmed in the arc matrix menu (Protection \rightarrow *Arc protection* \rightarrow *I/O* \rightarrow *Direct output control* and *HSO control*).

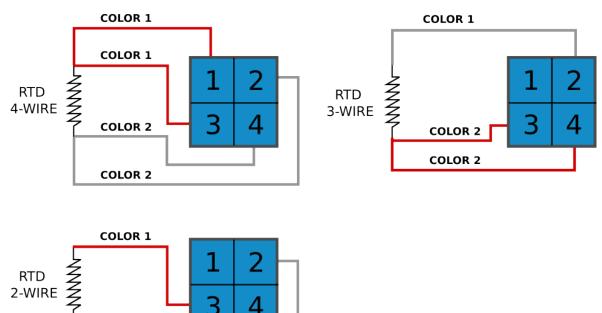
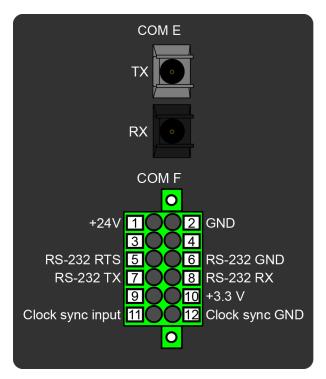

7.5.4 RTD input module (optional)

Figure. 7.5.4 - 193. RTD input module connectors.

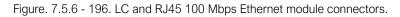
Channel	Connect	0	Co	onnector	
1	RTD1-1	1		2	RTD1-2
1	RTD1-3	3	\bigcirc	4	RTD1-4
2	RTD2-1	5	\bigcirc	6	RTD2-2
2	RTD2-3	7	\bigcirc	8	RTD2-4
3	RTD3-1	9	\bigcirc	10	RTD3-2
5	RTD3-3	11	\bigcirc	12	RTD3-4
4	RTD4-1	13	\bigcirc	14	RTD4-2
4	RTD4-3	15	\bigcirc	1 6	RTD4-4
5	RTD5-1	17	\bigcirc	18	RTD5-2
5	RTD5-3	19	\bigcirc	20	RTD5-4
6	RTD6-1	21		22	RTD6-2
0	RTD6-3	23		24	RTD6-4
7	RTD7-1	25	\bigcirc	26	RTD7-2
/	RTD7-3	27	\bigcirc	28	RTD7-4
8	RTD8-1	29	\bigcirc	30	RTD8-2
0	RTD8-3	31		32	RTD8-4
			0		

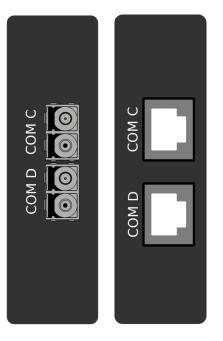
The RTD input module is an add-on module with eight (8) RTD input channels. Each input supports 2-wire, 3-wire and 4-wire RTD sensors. The sensor type can be selected with software for two groups, four channels each. The card supports Pt100 and Pt1000 sensors



7.5.5 Serial RS-232 communication module (optional)

COLOR 2

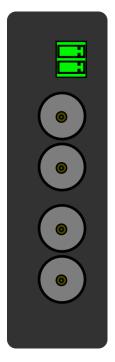



Table. 7.5.5 - 354. Module connections.

Connector	Pin	Name	Description		
COM E	-	Serial fiber	 Serial-based communications Port options: Glass/glass Plastic/plastic Glass/plastic Plastic/glass Wavelength 660 nm Compatible with 50/125 µm, 62.5/125 µm, 100/140 µm, and 200 µm Plastic-Clad Silica (PCS) fiber Compatible with ST connectors 		
	1	+24 V input	Ontional ovtornal auviliany voltage for sorial fiber		
	2	GND	Optional external auxiliary voltage for serial fiber.		
	3		Not in use.		
	4				
	5	RS-232 RTS	- Serial based communications.		
	6	RS-232 GND			
COM F	7	RS-232 TX			
	8	RS-232 RX			
	9	-	Not in use.		
	10	+3.3 V output (spare)	Spare power source for external equipment (45 mA).		
	11	Clock sync input	Clock synchronization input (supports IPIG P)		
	12	Clock sync GND	Clock synchronization input (supports IRIG-B).		

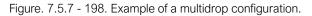
The option card includes two serial communication interfaces: COM E is a serial fiber interface with glass/glass, plastic/plastic, glass/plastic and plastic/glass options, COM F is an RS-232 interface.

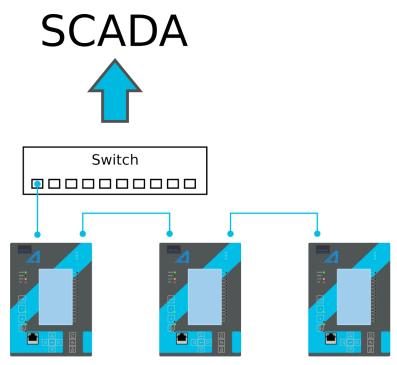
7.5.6 LC or RJ45 100 Mbps Ethernet communication module (optional)



Connector	Description (LC ports)	Description (RJ45)
COM C:	 Communication port C, 100 MbpsLC fiber connector. 62.5/125 µm or 50/125 µm multimode (glass). Wavelength 1300 nm. 	 RJ-45 connectors 10BASE-T and 100BASE-TX
COM D:	 Communication port D, 100 Mbps LC fiber connector. 62.5/125 µm or 50/125 µm multimode (glass). Wavelength 1300 nm. 	 RJ-45 connectors 10BASE-T and 100BASE-TX

Both cards support both HSR and PRP protocols.


7.5.7 Double ST 100 Mbps Ethernet communication module (optional)

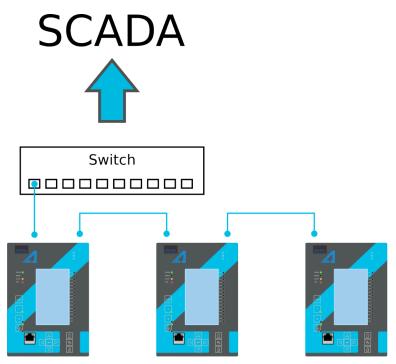


Connector	Description		
wo-pin connector • IRIG-B input			
ST connectors	 Duplex ST connectors 62.5/125 µm or 50/125 µm multimode fiber Transmitter wavelength: 12601360 nm (nominal: 1310 nm) Receiver wavelength: 11001600 nm 100BASE-FX Up to 2 km 		

This option cards supports redundant ring configuration and multidrop configurations. Please note that each ring can only contain AQ-200 series devices, and any third party devices must be connected to a separate ring.

7.5.8 Double RJ45 10/100 Mbps Ethernet communication module (optional)

Figure. 7.5.8 - 199. Double RJ-45 10/100 Mbps Ethernet communication module.



Connector	Description
Two-pin connector	IRIG-B input

Connector	Description
RJ-45 connectors	 Two Ethernet ports RJ-45 connectors 10BASE-T and 100BASE-TX

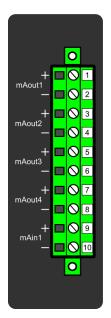

This option card supports multidrop configurations.

Figure. 7.5.8 - 200. Example of a multidrop configuration.

7.5.9 Milliampere output (mA) I/O module (optional)

Figure. 7.5.9 - 201. Milliampere output (mA) I/O module connections.

Connector	Description
Pin 1	mA OUT 1 + connector (024 mA)
Pin 2	mA OUT 1 – connector (024 mA)
Pin 3	mA OUT 2 + connector (024 mA)
Pin 4	mA OUT 2 – connector (024 mA)
Pin 5	mA OUT 3 + connector (024 mA)
Pin 6	mA OUT 3 – connector (024 mA)
Pin 7	mA OUT 4 + connector (024 mA)
Pin 8	mA OUT 4 – connector (024 mA)
Pin 9	mA IN 1 + connector (033 mA)
Pin 10	mA IN 1 – connector (033 mA)

The milliampere (mA) I/O module is an add-on module with four (4) mA outputs and one (1) mA input. Both the outputs and the input are in two galvanically isolated groups, with one pin for the positive (+) connector and one pin for the negative (–) connector.

This module can be ordered directly to be installed into the device in the factory, or it can be upgraded in the field after the device's original installation when required.

The user sets the mA I/O with the mA outputs control function. This can be done at *Control* \rightarrow *Device* $I/O \rightarrow mA$ outputs in the device configuration settings.

7.6 Dimensions and installation

The device can be installed either to a standard 19" rack or to a switchgear panel with cutouts. The desired installation type is defined in the order code. When installing to a rack, the device takes a half $(\frac{1}{2})$ of the rack's width, meaning that a total of two devices can be installed to the same rack next to one another.

The figures below describe the device dimensions (first figure), the device installation (second), and the panel cutout dimensions and device spacing (third).

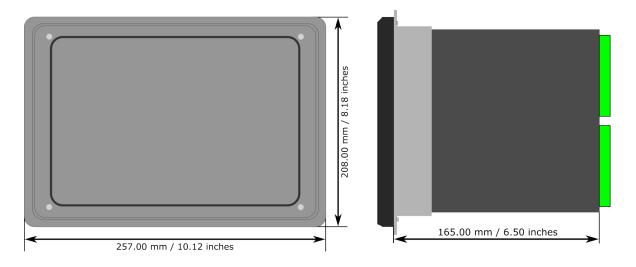
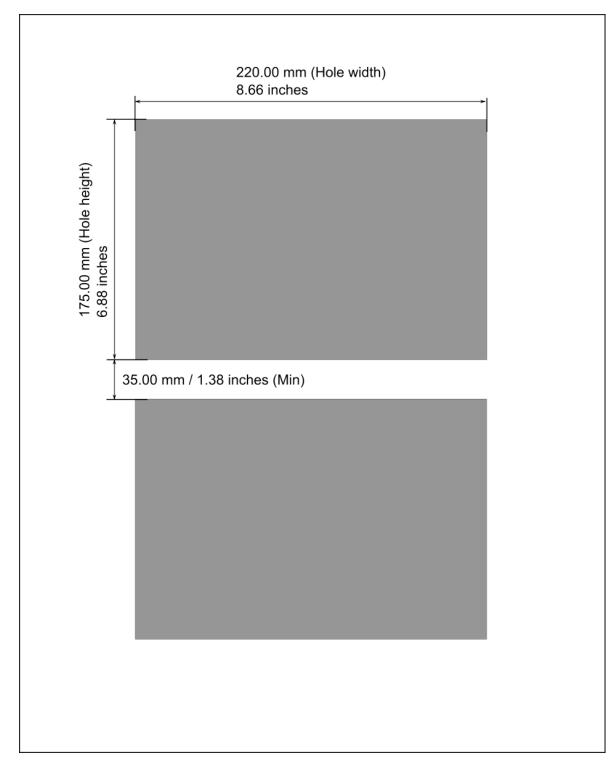
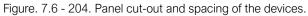




Figure. 7.6 - 203. Device installation.

8 Technical data

8.1 Hardware

8.1.1 Measurements

8.1.1.1 Current measurement

Table. 8.1.1.1 - 355. Technical data for the current measurement module.

General information		
Spare part code	#SP-2XX-CM	
Compatibility	AQ-210 and AQ-250 series models	
Connections		
Measurement channels/CT inputs	Three phase current inputs: IL1 (A), IL2 (B), IL3 (C) Two residual current inputs: Coarse residual current input I01, Fine residual current input I02	
Phase current inputs (A, B, C)	
Sample rate	64 samples per cycle in frequency range 675Hz	
Rated current I _N	5 A (configurable 0.210 A)	
Thermal withstand	20 A (continuous) 100 A (for 10 s) 500 A (for 1 s) 1250 A (for 0.01 s)	
Frequency measurement range	From 675Hz fundamental, up to the 31 st harmonic current	
Current measurement range	25 mA250 A (RMS)	
Current measurement inaccuracy	$\begin{array}{l} 0.0054.000 \times I_N < \pm 0.5 \ \mbox{or} < \pm 15 \ \mbox{mA} \\ 420 \times I_N < \pm 0.5 \ \mbox{mA} \\ 2050 \times I_N < \pm 1.0 \ \mbox{mA} \end{array}$	
Angle measurement inaccuracy	< ±0.2° (I> 0.1 A) < ±1.0° (I≤ 0.1 A)	
Burden (50/60 Hz)	<0.1 VA	
Transient overreach	<8 %	
Coarse residual current input	(101)	
Rated current I _N	1 A (configurable 0.110 A)	

	I	
Ring terminal dimensions	Max 8mm diameter, with minimum 3,5mm screw hole	
Ring lug terminal block connection (option)		
Solid or stranded wire Nominal cross section	4 mm ²	
Terminal block	Phoenix Contact FRONT 4-H-6,35	
Screw connection terminal block (standard)		
Transient overreach	<5 %	
Burden (50/60Hz)	<0.1 VA	
Angle measurement inaccuracy	< ±0.2° (I> 0.01 A) < ±1.0° (I≤ 0.01 A)	
Current measurement inaccuracy	0.00225.000 × I _N < ±0.5 % or < ±0.6 mA 25375 × I _N < ±1.0 %	
Current measurement range	1 mA75 A (RMS)	
Frequency measurement range	From 675 Hz fundamental, up to the 31 st harmonic current	
Thermal withstand	25 A (continuous) 100 A (for 10 s) 500 A (for 1 s) 1250 A (for 0.01 s)	
Rated current I _N	0.2 A (configurable 0.00110 A)	
Fine residual current input (I02)		
Transient overreach	<5 %	
Burden (50/60Hz)	<0.1 VA	
Angle measurement inaccuracy	< ±0.2° (I> 0.05 A) < ±1.0° (I≤ 0.05 A)	
Current measurement inaccuracy	$0.00210.000 \times I_N < \pm 0.5$ % or $< \pm 3$ mA $10150 \times I_N < \pm 0.5$ %	
Current measurement range	5 mA150 A (RMS)	
Frequency measurement range	From 675 Hz fundamental, up to the 31 st harmonic current	
Thermal withstand	25 A (continuous) 100 A (for 10 s) 500 A (for 1 s) 1250 A (for 0.01 s)	

NOTICE!

i

Current measurement accuracy has been verified with 50/60 Hz.

The amplitude difference is 0.2 % and the angle difference is 0.5 degrees higher at 16.67 Hz and other frequencies.

8.1.1.2 Voltage measurement

Table. 8.1.1.2 - 356. Technical data for the voltage measurement module.	Table. 8.1.1.2	- 356. Technica	al data for the voltage	measurement module.
--	----------------	-----------------	-------------------------	---------------------

General information	
Spare part code	#SP-2XX-VT
Compatibility	AQ 200 series and AQ 250 series models
Connection	
Measurement channels/VT inputs	4 independent VT inputs (U1, U2, U3 and U4)
Measurement	
Sample rate	64 samples per cycle in frequency range 675Hz
Voltage measuring range	0.50480.00 V (RMS)
Voltage measurement inaccuracy	12 V ±1.5 % 210 V ±0.5 % 10480 V ±0.35 %
Angle measurement inaccuracy	±0.2 degrees (15300 V) ±1.5 degrees (115 V)
Voltage measurement bandwidth (freq.)	775 Hz fundamental, up to the 31 st harmonic voltage
Terminal block connection	
Screw connection terminal block (standard)	Phoenix Contact PC 5/ 8-STCL1-7,62
Spring cage terminal block (optional)	Phoenix Contact SPC 5/ 8-STCL-7,82
Solid or stranded wire Nominal cross section	6 mm ²
Input impedance	~24.5 MΩ
Burden (50/60 Hz)	<0.02 VA
Thermal withstand	630 V _{RMS} (continuous)

NOTICE!

Voltage measurement accuracy has been verified with 50/60 Hz.

The amplitude difference is 0.2 % and the angle difference is 0.5 degrees higher at 16.67 Hz and other frequencies.

8.1.1.3 Voltage memory

Table. 8.1.1.3 - 357. Technical data for the voltage memory function.

Measurement inputs

Voltage inputs	UL1, UL2, UL3 UL12, UL23, UL31 + U0
Current inputs (back-up frequency)	Phase current inputs: IL1 (A), IL2 (B), IL3 (C)
Pick-up	
Pick-up voltage setting Pick-up current setting (optional)	2.0050.00 %U _N , setting step 0.01 x %U _N 0.0150.00 × I _N , setting step 0.01 × I _N
Inaccuracy: - Voltage - Current	±1.5 %U _{SET} or ±30 mV ±0.5 %I _{SET} or ±15 mA (0.104.0 × I _{SET})
Operation time	
Angle memory activation delay	<20 ms (typically 5 ms)
Maximum active time	0.02050.000 s, setting step 0.005 s
Inaccuracy: - Definite time (U _M /U _{SET} ratio >1.05)	±1.0 % or ±35 ms
Angle memory	
Angle drift while voltage is absent	±1.0° per 1 second
Reset	
Reset ratio: - Voltage memory (voltage) - Voltage memory (current)	103 % of the pick-up voltage setting 97 % of the pick-up current setting
Reset time	<50 ms

NOTICE!

Voltage memory is activated only when all line voltages fall below set pick-up value.

NOTICE!

Voltage memory activation captures healthy situation voltage angles, one cycle before actual activation (50Hz/20ms before "bolted" fault)

8.1.1.4 Power and energy measurement

Table. 8.1.1.4 - 358. Power and energy measurement accuracy

Power measurement P, Q, S	Frequency range 675 Hz	
Inaccuracy	0.3 % <1.2 × I _N or 3 VA secondary 1.0 % >1.2 × I _N or 3 VA secondary	
Energy measurement	Frequency range 675 Hz	
Energy and power metering inaccuracy	0.5% down to 1A RMS (50/60Hz) as standard 0.2% down to 1A RMS (50/60Hz) option available (see the order code for details)	

8.1.1.5 Frequency measurement

Table. 8.1.1.5 - 359. Frequency measurement accuracy.

Frequency measurement performance	
Frequency measuring range	675 Hz fundamental, up to the 31 st harmonic current or voltage
Inaccuracy	10 mHz

8.1.2 CPU & Power supply

Table. 8.1.2 - 360. General information for the CPU module.

General information		
Spare part code	#SP-250-CPU	
Compatibility	AQ-250 series models	
Terminal block connection		
Screw connection terminal block (standard)	Phoenix Contact MSTB 2,5/5-ST-5,08	
Spring cage terminal block (option)	Phoenix Contact FKC 2,5/20-STF-5,08	
Solid or stranded wire Nominal cross section	2.5 mm ²	
RS-485 serial terminal block connection		
Screw connection terminal block (standard)	Phoenix Contact MC 1,5/ 5-ST-3,81	
Spring cage terminal block (option)	Phoenix Contact FK-MCP 1,5/ 5-ST-3,81	
Solid or stranded wire Nominal cross section	1.5 mm ²	

8.1.2.1 Auxiliary voltage

Rated values	
Rated auxiliary voltage	80265 V (AC/DC)
Power consumption	< 20 W (no option cards) < 40 W (maximum number of option cards)
Maximum permitted interrupt time	< 40 ms with 110 VDC
DC ripple	< 15 %
Other	
Minimum recommended fuse rating	MCB C2

Table. 8.1.2.1 - 362. Power supply model B

Rated values	
Rated auxiliary voltage	1872 VDC
Power consumption	< 20 W (no option cards) < 40 W (maximum number of option cards)
Maximum permitted interrupt time	< 40 ms with 24 VDC
DC ripple	< 15 %
Other	
Minimum recommended fuse rating	MCB C2

8.1.2.2 CPU communication ports

Table. 8.1.2.2 - 363. Front panel local communication port.

Port	
Port media	Copper Ethernet RJ-45
Number of ports	1
Port protocols	PC-protocols FTP Telnet
Features	
Data transfer rate	100 MB/s
System integration	Cannot be used for system protocols, only for local programming

Table. 8.1.2.2 - 364. Rear panel system communication port A.

Port	
Port media	Copper Ethernet RJ-45
Number of ports	1
Features	
Port protocols	IEC 61850 IEC 104 Modbus/TCP DNP3 FTP Telnet
Data transfer rate	100 MB/s
System integration	Can be used for system protocols and for local programming

Table. 8.1.2.2 - 365. Rear panel system communication port B.

Port	
Port media	Copper RS-485
Number of ports	1
Features	
Port protocols	Modbus/RTU IEC 103 IEC 101 DNP3 SPA
Data transfer rate	65 580 kB/s
System integration	Can be used for system protocols

8.1.2.3 CPU digital inputs

Table. 8.1.2.3 - 366. CPU model-isolated digital inputs, with thresholds defined by order code.

Rated values		
Rated auxiliary voltage	265 V (AC/DC)	
Nominal voltage	Order code defined: 24, 110, 220 V (AC/DC)	
Pick-up threshold Release threshold	Order code defined: 19, 90,170 V Order code defined: 14, 65, 132 V	
Scanning rate	5 ms	
Settings		
Pick-up delay	Software settable: 01800 s	
Polarity	Software settable: Normally On/Normally Off	
Current drain	2 mA	

8.1.2.4 CPU digital outputs

Table. 8.1.2.4 - 367. Digital outputs (Normally Open)

Rated values	
Rated auxiliary voltage	265 V (AC/DC)
Continuous carry	5 A
Make and carry 0.5 s Make and carry 3 s	30 A 15 A

Breaking capacity, DC (L/R = 40 ms) at 48 VDC at 110 VDC at 220 VDC	1 A 0.4 A 0.2 A	
Control rate	5 ms	
Settings		
Polarity	Software settable: Normally Open / Normally Closed	

Table. 8.1.2.4 - 368. Digital outputs (Change-Over)

Rated values	
Rated auxiliary voltage	265 V (AC/DC)
Continuous carry	2.5 A
Make and carry 0.5 s Make and carry 3 s	30 A 15 A
Breaking capacity, DC (L/R = 40 ms) at 48 VDC at 110 VDC at 220 VDC	1 A 0.3 A 0.15 A
Control rate	5 ms
Settings	
Polarity	Software settable: Normally Open / Normally Closed

CAUTION!

Please note, that signaling relay 5 and system fault's signaling relay are designed only for signaling purposes, and are not to be used in trip coil control.

8.1.3 Option cards

8.1.3.1 Digital input module

Table. 8.1.3.1 - 369. Technical data for the digital input module.

General information		
Spare part code	#SP-250-DI8	
Compatibility	AQ-250 series models	
Rated values		
Rated auxiliary voltage	5265 V (AC/DC)	
Current drain	2 mA	

Scanning rate Activation/release delay	5 ms 511 ms
Settings	
Pick-up threshold Release threshold	Software settable: 16200 V, setting step 1 V Software settable: 10200 V, setting step 1 V
Pick-up delay	Software settable: 01800 s
Drop-off delay	Software settable: 01800 s
Polarity	Software settable: Normally On/Normally Off
Terminal block connection	
Screw connection terminal block (standard)	Phoenix Contact MSTB 2,5/10-ST-5,08
Spring cage terminals block (option)	Phoenix Contact FKC 2,5/10-STF-5,08
Solid or stranded wire Nominal cross section	2.5 mm ²

8.1.3.2 Digital output module

Table. 8.1.3.2 - 370. Technical data for the digital output module.

General information		
Spare part code	#SP-250-DO5	
Compatibility	AQ-250 series models	
Rated values		
Rated auxiliary voltage	265 V (AC/DC)	
Continuous carry	5 A	
Make and carry 0.5 s Make and carry 3 s	30 A 15 A	
Breaking capacity, DC (L/R = 40 ms) at 48 VDC at 110 VDC at 220 VDC	1 A 0.4 A 0.2 A	
Control rate	5 ms	
Settings		
Polarity	Software settable: Normally On/Normally Off	
Terminal block connection		
Screw connection terminal block (standard)	Phoenix Contact MSTB 2,5/10-ST-5,08	
Spring cage terminals block (option)	Phoenix Contact FKC 2,5/10-STF-5,08	

© Arcteq Relays Ltd IM00035

Solid or stranded wire	
Nominal cross section	2.5 mm ²

8.1.3.3 Point sensor arc protection module

Table. 8.1.3.3 - 371. Technical data for the point sensor arc protection module.

General information		
Spare part code	#SP-2XX-ARC	
Compatibility	AQ-200 series & AQ-250 series models	
Connections		
Input arc point sensor channels	S1, S2, S3, S4 (pressure and light, or light only)	
Sensors per channel	3	
Maximum cable length	200 m	
Performance		
Pick-up light intensity	8, 25 or 50 kLx (the sensor is selectable in the order code)	
Point sensor detection radius	180 degrees	
Start and instant operating time (light only)	Typically <5 ms with dedicated semiconductor outputs (HSO) Typically <10 ms regular output relays	

Table. 8.1.3.3 - 372. High-Speed Outputs (HSO1...2)

Rated values	
Rated auxiliary voltage	250 VDC
Continuous carry	2 A
Make and carry 0.5 s Make and carry 3 s	15 A 6 A
Breaking capacity, DC (L/R = 40 ms)	1 A/110 W
Control rate	5 ms
Operation delay	<1 ms
Polarity	Normally Off
Contact material	Semiconductor

Table. 8.1.3.3 - 373. Binary input channel

Rated values	
Voltage withstand	265 VDC

Nominal voltage Pick-up threshold Release threshold	24 VDC ≥16 VDC ≤15 VDC
Scanning rate	5 ms
Polarity	Normally Off
Current drain	3 mA

Table. 8.1.3.3 - 374. Terminal block connections

Arc point sensor terminal block connections		
Spring cage terminal block	Phoenix Contact DFMC 1,5/ 6-STF-3,5	
Solid or stranded wire Nominal cross section	1.5 mm ²	
Binary input and HSO terminal block connections		
Screw connection terminal block (standard)	Phoenix Contact MSTB 2,5/5-ST-5,08	
Spring cage terminals block (option)	Phoenix Contact FKC 2,5/10-STF-5,08	
Solid or stranded wire Nominal cross section	2.5 mm ²	

NOTICE!

The polarity must be correct!

8.1.3.4 Milliampere output module (mA out & mA in)

Table. 8.1.3.4 - 375. Technical data for the milliampere output module.

General information		
Spare part code	#SP-2XX-MA	
Compatibility	AQ-200 series & AQ-250 series models	
Signals		
Output magnitudes Input magnitudes	4 × mA output signal (DC) 1 × mA input signal (DC)	
mA input		
Range (hardware) Range (measurement) Inaccuracy	033 mA 024 mA ±0.1 mA	
Update cycle Response time @ 5 ms cycle Update cycle time inaccuracy	510 000 ms, setting step 5 ms ~ 15 ms (1318 ms) Max. +20 ms above the set cycle	

E.

Version: 2.12

mA input scaling range Output scaling range	04000 mA -1 000 000.00001 000 000.0000, setting step 0.0001	
mA output		
Inaccuracy @ 024 mA	±0.01 mA	
Response time @ 5 ms cycle [fixed]	< 5 ms	
mA output scaling range Source signal scaling range	024 mA, setting step 0.001 mA -1 000 000.0001 000 000.0000, setting step 0.0001	
Terminal block connection		
Screw connection terminal block (standard)	Phoenix Contact MSTB 2,5/10-ST-5,08	
Spring cage terminals block (option)	Phoenix Contact FKC 2,5/10-STF-5,08	
Solid or stranded wire Nominal cross section	2.5 mm ²	

8.1.3.5 RTD input module

Table. 8.1.3.5 - 376. Technical data for the RTD input module.

General information		
Spare part code	#SP-2xx-RTD	
Compatibility	AQ-200 series & AQ-250 series models	
Channels 1-8		
2/3/4-wire RTD		
Pt100 or Pt1000		
Terminal block connection		
Spring cage terminals block	Phoenix Contact DFMC 1,5/ 16-STF-3,5	
Solid or stranded wire Nominal cross section	1.5 mm ²	

8.1.3.6 RS-232 & serial fiber communication module

Table. 8.1.3.6 - 377. Technical data for the RS-232 & serial fiber communication module.

General information	
PP Spare part code	#SP-2XX-232PP
PG Spare part code	#SP-2XX-232PG
GP Spare part code	#SP-2XX-232GP
GG Spare part code	#SP-2XX-232GG

Compatibility	AQ-200 series & AQ-250 series models
Ports	
RS-232	
Serial fiber (GG/PP/GP/PG)	
Serial port wavelength	
660 nm	
Cable type	
1 mm plastic fiber	
Terminal block connections	
Spring cage terminals block	Phoenix Contact DFMC 1,5/ 6-STF-3,5
Solid or stranded wire Nominal cross section	1.5 mm ²

8.1.3.7 Double LC 100 Mbps Ethernet communication module

Table. 8.1.3.7 - 378. Technical data for the double LC 100 Mbps Ethernet communication module.

General information		
Spare part code	#SP-2XX-2XLC	
Compatibility	AQ-200 series & AQ-250 series models	
Protocols		
Protocols	HSR and PRP	
Ports		
Quantity of fiber ports	2	
Communication port C & D	LC fiber connector Wavelength 1300 nm	
Fiber cable	50/125 μm or 62.5/125 μm multimode (glass)	

8.1.3.8 Double ST 100 Mbps Ethernet communication module

Table. 8.1.3.8 - 379. Technical data for the double ST 100 Mbps Ethernet communication module.

General information	
Spare part code	#SP-2XX-2XST
Compatibility	AQ-200 series & AQ-250 series models
Dimensions	74 mm X 179 mm

8 Technical data

Version: 2.12

Ports	ST connectors (2) and IRIG-B connector (1)
Protocols	
Protocols	IEC61850, DNP/TCP, Modbus/TCP, IEC104 & FTP
ST connectors	
Connector type	Duplex ST connectors 62.5/125 µm or 50/125 µm multimode fiber 100BASE-FX
Transmitter wavelength	12601360 nm (nominal: 1310 nm)
Receiver wavelength	11001600 nm
Maximum distance	2 km
IRIG-B Connector	
Screw connection terminal block	Phoenix Contact MC 1,5/ 2-ST-3,5 BD:1-2
Solid or stranded wire Nominal cross section	1.5 mm ²

8.1.4 Display

Table. 8.1.4 - 380. Technical data for the HMI TFT display.

General information		
Spare part code	#SP-200-DISP	
Compatibility	AQ-250 series models	
Dimensions and resolution		
Number of dots/resolution	800 x 480	
Size	154.08 × 85.92 mm (6.06 × 3.38 in)	
Display		
Type of display	TFT	
Color	RGB color	

8.2 Functions

8.2.1 Protection functions

8.2.1.1 Capacitor bank overload protection (Icol>; 49OL)

Table. 8.2.1.1 - 381. Technical data for the capacitor bank overload function.

Input signals	
Current inputs	Phase current inputs: I _{L1} (A), I _{L2} (B), I _{L3} (C)
Current input magnitudes	RMS phase currents TRMS phase currents Peak-to-peak phase currents
Pick-up	
Pick-up current setting	$0.1050.00\times I_n,$ setting step $0.01\times I_n$
Inrush 2nd harmonic blocking	0.1050.00 %I _{fund} , setting step 0.01 %I _{fund}
Inaccuracy: - Current - 2 nd harmonic blocking	± 0.5 %I _{set} or ± 15 mA (0.104.0 × I _{set}) ± 1.0 %-unit of the 2 nd harmonic setting
Operation time	
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s
Inaccuracy: - Definite time: I _m /I _{set} ratio > 3 - Definite time: I _m /I _{set} ratio = 1.053	±1.0 % or ±20 ms ±1.0 % or ±30 ms
IDMT setting parameters: - k Time dial setting for IDMT - A IDMT constant - B IDMT constant - C IDMT constant	0.0125.00, step 0.01 0250.0000, step 0.0001 05.0000, step 0.0001 0250.0000, step 0.0001
Inaccuracy: - IDMT operating time - IDMT minimum operating time	±1.5 % or ±20 ms ±20 ms
Retardation time (overshoot)	<25 ms
Instant operation time	
Start time and instant operation time (trip): - I _m /I _{set} ratio > 3 - I _m /I _{set} ratio = 1.053	<35 ms (typically 25 ms) <50 ms
Reset	
Reset ratio	97 % of the pick-up current setting
Reset time setting Inaccuracy: Reset time	0.01010.000 s, step 0.005 s ±1.0 % or ±50 ms

i

Version: 2.12

Instant reset time and start-up reset <50 ms	S
--	---

NOTICE!

The release delay does not apply to phase-specific tripping!

8.2.1.2 Capacitor bank neutral unbalance protection (Cnu>; 50UB)

Table. 8.2.1.2 - 382. Technical data for the capacitor bank neutral unbalance function.

Measurement inputs		
Current inputs	Phase current inputs: I_{L1} (A), I_{L2} (B), I_{L3} (C)	
Current input magnitudes	RMS phase currents TRMS phase currents Peak-to-peak phase currents	
Pick-up		
Pick-up current setting	$0.1050.00 \times I_n$, setting step $0.0001 \times I_n$	
Inrush 2nd harmonic blocking	0.1050.00 %I _{fund} , setting step 0.01 %I _{fund}	
Inaccuracy: - Current - 2 nd harmonic blocking	± 0.5 %I _{set} or ± 15 mA (0.104.0 × I _{set}) ± 1.0 %-unit of the 2 nd harmonic setting	
Operation time		
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s	
Inaccuracy: - Definite time: I _m /I _{set} ratio > 3 - Definite time: I _m /I _{set} ratio = 1.053	±1.0 % or ±20 ms ±1.0 % or ±30 ms	
IDMT setting parameters: - k Time dial setting for IDMT - A IDMT constant - B IDMT constant - C IDMT constant	0.0125.00, step 0.01 0250.0000, step 0.0001 05.0000, step 0.0001 0250.0000, step 0.0001	
Inaccuracy: - IDMT operating time - IDMT minimum operating time	±1.5 % or ±20 ms ±20 ms	
Retardation time (overshoot)	<25 ms	
Instant operation time		
Start time and instant operation time (trip): - I _m /I _{set} ratio > 3 - I _m /I _{set} ratio = 1.053	<35 ms (typically 25 ms) <50 ms	
Reset		
Reset ratio	97 % of the pick-up current setting	

	0.01010.000 s, step 0.005 s ±1.0 % or ±50 ms
Instant reset time and start-up reset	<50 ms

8.2.1.3 Capacitor bank current unbalance protection (luc>; 46C)

Table. 8.2.1.3 - 383. Technical data for the capacitor bank current unbalance function.

Measurement inputs	
Current inputs	Phase current inputs: I_{L1} (A), I_{L2} (B), I_{L3} (C)
Current input magnitudes	RMS phase currents TRMS phase currents Peak-to-peak phase currents
Pick-up	
Pick-up current setting	$0.1050.00 \times I_{\text{n}},$ setting step $0.0001 \times I_{\text{n}}$
Inrush 2nd harmonic blocking	0.1050.00 %I _{fund} , setting step 0.01 %I _{fund}
Inaccuracy: - Current - 2 nd harmonic blocking	± 0.5 %I _{set} or ± 15 mA (0.104.0 × I _{set}) ± 1.0 %-unit of the 2 nd harmonic setting
Operation time	
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s
Inaccuracy: - Definite time: I _m /I _{set} ratio > 3 - Definite time: I _m /I _{set} ratio = 1.053	±1.0 % or ±20 ms ±1.0 % or ±30 ms
IDMT setting parameters: - k Time dial setting for IDMT - A IDMT constant - B IDMT constant - C IDMT constant	0.0125.00, step 0.01 0250.0000, step 0.0001 05.0000, step 0.0001 0250.0000, step 0.0001
Inaccuracy: - IDMT operating time - IDMT minimum operating time	±1.5 % or ±20 ms ±20 ms
Retardation time (overshoot)	<25 ms
Instant operation time	
Start time and instant operation time (trip): - I _m /I _{set} ratio > 3 - I _m /I _{set} ratio = 1.053	<35 ms (typically 25 ms) <50 ms
Reset	
Reset ratio	97 % of the pick-up current setting
Reset time setting Inaccuracy: Reset time	0.01010.000 s, step 0.005 s ±1.0 % or ±50 ms

Instant reset time and start-up reset	<50 ms
---------------------------------------	--------

8.2.1.4 Non-directional overcurrent protection (I>; 50/51)

Table. 8.2.1.4 - 384. Technical data for the non-directional overcurrent function.

Measurement inputs	
Current inputs	Phase current inputs: IL1 (A), IL2 (B), IL3 (C)
Current input magnitudes	RMS phase currents TRMS phase currents Peak-to-peak phase currents
Pick-up	
Pick-up current setting	$0.1050.00\times I_{\text{n}},$ setting step $0.01\times I_{\text{n}}$
Inrush 2nd harmonic blocking	0.1050.00 %I _{fund} , setting step 0.01 %I _{fund}
Inaccuracy: - Current - 2 nd harmonic blocking	± 0.5 %I _{set} or ± 15 mA (0.104.0 × I _{set}) ± 1.0 %-unit of the 2 nd harmonic setting
Operation time	
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s
Inaccuracy: - Definite time: I _m /I _{set} ratio > 3 - Definite time: I _m /I _{set} ratio = 1.053	±1.0 % or ±20 ms ±1.0 % or ±30 ms
IDMT setting parameters: - k Time dial setting for IDMT - A IDMT constant - B IDMT constant - C IDMT constant	0.0125.00, step 0.01 0250.0000, step 0.0001 05.0000, step 0.0001 0250.0000, step 0.0001
Inaccuracy: - IDMT operating time - IDMT minimum operating time	±1.5 % or ±20 ms ±20 ms
Retardation time (overshoot)	<30 ms
Instant operation time	
Start time and instant operation time (trip): - I _m /I _{set} ratio = 2 - I _m /I _{set} ratio = 5 - I _m /I _{set} ratio = 10	Typically 25 ms Typically 16 ms Typically 12 ms
Reset	
Reset ratio	97 % of the pick-up current setting
Reset time setting Inaccuracy: Reset time	0.01010.000 s, step 0.005 s ±1.0 % or ±50 ms
Instant reset time and start-up reset	<50 ms

NOTICE! The release delay does <u>not</u> apply to phase-specific tripping!

8.2.1.5 Non-directional earth fault protection (I0>; 50N/51N)

Table. 8.2.1.5 - 385. Technical data for the non-directional earth fault function.

Measurement inputs	
Current input (selectable)	Residual current channel I ₀₁ (Coarse) Residual current channel I ₀₂ (Fine) Calculated residual current: I _{L1} (A), I _{L2} (B), I _{L3} (C)
Current input magnitudes	RMS residual current (l ₀₁ , l ₀₂ or calculated l ₀) TRMS residual current (l ₀₁ or l ₀₂) Peak-to-peak residual current (l ₀₁ or l ₀₂)
Pick-up	
Used magnitude	Measured residual current I01 (1 A) Measured residual current I02 (0.2 A) Calculated residual current I0Calc (5 A)
Pick-up current setting	$0.000140.00\times I_n,$ setting step $0.0001\times I_n$
Inaccuracy: - Starting I01 (1 A) - Starting I02 (0.2 A) - Starting I0Calc (5 A)	±0.5 %I0 _{set} or ±3 mA (0.00510.0 × I _{set}) ±1.5 %I0 _{set} or ±1.0 mA (0.00525.0 × I _{set}) ±1.0 %I0 _{set} or ±15 mA (0.0054.0 × I _{set})
Operating time	
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s
Inaccuracy: - Definite time: I _m /I _{set} ratio > 3 - Definite time: I _m /I _{set} ratio = 1.053	±1.0 % or ±20 ms ±1.0 % or ±30 ms
IDMT setting parameters: - k Time dial setting for IDMT - A IDMT constant - B IDMT constant - C IDMT constant	0.0125.00, step 0.01 0250.0000, step 0.0001 05.0000, step 0.0001 0250.0000, step 0.0001
Inaccuracy: - IDMT operating time - IDMT minimum operating time	±1.5 % or ±20 ms ±20 ms
Retardation time (overshoot)	<30 ms
Instant operation time	
Start time and instant operation time (trip): - I_m/I_{set} ratio > 3.5 - I_m/I_{set} ratio = 1.053.5	<50 ms (typically 35 ms) <55 ms
Reset	
Reset ratio	97 % of the pick-up current setting

i

Version: 2.12

Reset time setting	0.01010.000 s, step 0.005 s
Inaccuracy: Reset time	±1.0 % or ±50 ms
Instant reset time and start-up reset	<50 ms

NOTICE!

The operation and reset time accuracy does <u>not</u> apply when the measured secondary current in I02 is 1...20 mA. The pick-up is tuned to be more sensitive and the operation times vary because of this.

8.2.1.6 Directional overcurrent protection (Idir>; 67)

Table. 8.2.1.6 - 386. Technical data for the directional overcurrent function.

Input signals		
Current inputs	Phase current inputs: I _{L1} (A), I _{L2} (B), I _{L3} (C)	
Current input magnitudes	RMS phase currents TRMS phase currents Peak-to-peak phase currents	
Current input calculations	Positive sequence current angle	
Voltage inputs	U _{L1} , U _{L2} , U _{L3} U _{L12} , U _{L23} , U _{L31} + U0	
Voltage input calculations	Positive sequence voltage angle	
Pick-up		
Characteristic direction	Directional, non-directional	
Operating sector center	-180.0180.0 deg, setting step 0.1 deg	
Operating sector size (+/-)	1.00170.00 deg, setting step 0.10 deg	
Pick-up current setting	$0.1040.00 \times I_n$, setting step $0.01 \times I_n$	
Inaccuracy: - Current - U1/I1 angle (U > 15 V) - U1/I1 angle (U = 115 V)	±0.5 %l _{set} or ±15 mA (0.104.0 × l _{set}) ±0.20° ±1.5°	
Operation time		
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s	
Inaccuracy: - Definite time: I _m /I _{set} ratio > 3 - Definite time: I _m /I _{set} ratio = 1.053	±1.0 % or ±20 ms ±1.0 % or ±35 ms	
IDMT setting parameters: - k Time dial setting for IDMT - A IDMT constant - B IDMT constant - C IDMT constant	0.0125.00, step 0.01 0250.0000, step 0.0001 05.0000, step 0.0001 0250.0000, step 0.0001	

Inaccuracy: - IDMT operating time - IDMT minimum operating time	±1.5 % or ±20 ms ±20 ms	
Instant operation time		
Start time and instant operation time (trip): - I _m /I _{set} ratio > 3 - I _m /I _{set} ratio = 1.053	<40 ms (typically 30 ms) <50 ms	
Reset		
Reset ratio: - Current - U1/I1 angle	97 % of the pick-up current setting 2.0°	
Reset time setting Inaccuracy: Reset time	0.01010.000 s, step 0.005 s ±1.0 % or ±50 ms	
Instant reset time and start-up reset	<50 ms	

NOTICE!

The minimum voltage for direction solving is 1.0 V secondary. During three-phase shortcircuits the angle memory is active for 0.5 seconds in case the voltage drops below 1.0 V.

8.2.1.7 Directional earth fault protection (I0dir>; 67N/32N)

Table. 8.2.1.7 - 387. Technical data for the directional earth fault function.

Measurement inputs	
Current input (selectable)	Residual current channel I ₀₁ (Coarse) Residual current channel I ₀₂ (Fine) Calculated residual current: I _{L1} (A), I _{L2} (B), I _{L3} (C)
Current input magnitudes	RMS residual current (I ₀₁ , I ₀₂ or calculated I ₀) TRMS residual current (I ₀₁ or I ₀₂) Peak-to-peak residual current (I ₀₁ or I ₀₂)
Voltage input (selectable)	Residual voltage from U3 or U4 voltage channel Residual voltage calculated from U_{L1} , U_{L2} , U_{L3}
Voltage input magnitudes	RMS residual voltage U0 Calculated RMS residual voltage U0
Pick-up	
Characteristic direction	Unearthed (Varmetric 90°) Petersen coil GND (Wattmetric 180°) <u>Earthed</u> (Adjustable sector)
When the <u>earthed</u> mode is active: - Tripping area center - Tripping area size (+/-)	0.00360.00 deg, setting step 0.10 deg 45.00135.00 deg, setting step 0.10 deg
Pick-up current setting Pick-up voltage setting	0.00540.00 × I _n , setting step 0.001 × I _n 1.0075.00 %U0 _n , setting step 0.01 %U0 _n

Inaccuracy: - Starting I01 (1 A) - Starting I02 (0.2 A) - Starting I0Calc (5 A) - Voltage U0 and U0Calc - U0/I0 angle (U > 15 V) - U0/I0 angle (U = 115 V)	$\begin{array}{l} \pm 0.5 \ \% \text{I0}_{\text{Set}} \ \text{or} \ \pm 3 \ \text{mA} \ (0.00510.0 \times \text{I}_{\text{Set}}) \\ \pm 1.5 \ \% \text{I0}_{\text{Set}} \ \text{or} \ \pm 1.0 \ \text{mA} \ (0.00525.0 \times \text{I}_{\text{Set}}) \\ \pm 1.5 \ \% \text{I0}_{\text{Set}} \ \text{or} \ \pm 15 \ \text{mA} \ (0.0054.0 \times \text{I}_{\text{Set}}) \\ \pm 1.0 \ \% \text{U0}_{\text{Set}} \ \text{or} \ \pm 30 \ \text{mV} \\ \pm 0.2^{\circ} \ (\text{I0Calc} \ \pm 1.0^{\circ}) \\ \pm 1.0^{\circ} \end{array}$
Operation time	
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s
Inaccuracy: - Definite time (I _m /I _{set} ratio 1.05→)	±1.0 % or ±45 ms
IDMT setting parameters: - k Time dial setting for IDMT - A IDMT constant - B IDMT constant - C IDMT constant	0.0125.00, step 0.01 0250.0000, step 0.0001 05.0000, step 0.0001 0250.0000, step 0.0001
Inaccuracy: - IDMT operating time - IDMT minimum operating time	±1.5 % or ±25 ms ±20 ms
Instant operation time	
Start time and instant operation time (trip): - I _m /I _{set} ratio > 3 - I _m /I _{set} ratio = 1.053	<55 ms (typically 45 ms) <65 ms
Reset	
Current and voltage reset U0/I0 angle	97 % of the pick-up current and voltage setting 2.0°
Reset time setting Inaccuracy: Reset time	0.000150.000 s, step 0.005 s ±1.0 % or ±45 ms
Instant reset time and start-up reset	<50 ms

8.2.1.8 Intermittent earth fault protection (I0int>; 67NT)

Table. 8.2.1.8 - 388. Technical data for the intermittent earth fault function.

Measurement inputs		
Current inputs (selectable)	Residual current channel I ₀₁ (Coarse) Residual current channel I ₀₂ (Fine)	
Current input magnitudes	Residual current samples	
Voltage inputs (selectable)	Residual voltage from U3 or U4 voltage channel	
Voltage input magnitude	Zero sequence voltage samples	
Pick-up settings		
Spikes to trip	150, setting step 1	

Pick-up current setting Pick-up voltage setting	$0.0540.00 \times I_n$, setting step $0.001 \times I_n$ 1.00100.00 %U0 _n , setting step 0.01 %U0 _n	
Pick-up inaccuracy		
Starting I01 (1 A) Starting I02 (0.2 A) Voltage U0	±0.5 %I0 _{set} or ±3 mA (0.00510.0 x I _{set}) ±1.5 %I0 _{set} or ±1.0 mA (0.00525.0 x I _{set}) ±1.0 %U0 _{set} or ±30 mV	
Operation time setting		
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s	
Operation time inaccuracy		
Definite time: I_m/I_{set} ratio 1.05 \rightarrow	±1.0 % or ±30 ms	
Instant operation time		
Start time and instant operation time (trip): - I_m/I_{set} ratio 1.05 \rightarrow	<15 ms	
Reset time		
Reset time setting (FWD and REV) Inaccuracy: Reset time	0.0001800.000 s, step 0.005 s ±1.0 % or ±35 ms	
Instant reset time and start-up reset	<50 ms	

8.2.1.9 Negative sequence overcurrent/ phase current reversal/ current unbalance protection (I2>; 46/46R/46L)

Table. 8.2.1.9 - 389. Technical data for the current unbalance function.

Measurement inputs	
Current inputs	Phase current inputs: I _{L1} (A), I _{L2} (B), I _{L3} (C)
Current input calculations	Positive sequence current (I1) Negative sequence current (I2)
Pick-up	
Used magnitude	Negative sequence component I2pu Relative unbalance I2/I1
Pick-up setting	0.0140.00 × I _n , setting step 0.01 × I _n (I2pu) 1.00200.00 %, setting step 0.01 % (I2/I1)
Minimum phase current (at least one phase above)	$0.012.00 \times I_n$, setting step $0.01 \times I_n$
Inaccuracy: - Starting I2pu - Starting I2/I1	± 1.0 %-unit or ± 100 mA (0.104.0 × I _n) ± 1.0 %-unit or ± 100 mA (0.104.0 × I _n)
Operating time	
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s

Inaccuracy: - Definite time (I _m /I _{set} ratio > 1.05)	±1.5 % or ±60 ms
IDMT setting parameters: - k Time dial setting for IDMT - A IDMT Constant - B IDMT Constant - C IDMT Constant	0.0125.00, step 0.01 0250.0000, step 0.0001 05.0000, step 0.0001 0250.0000, step 0.0001
Inaccuracy: - IDMT operating time - IDMT minimum operating time	±2.0 % or ±30 ms ±20 ms
Retardation time (overshoot)	<5 ms
Instant operation time	
Start time and instant operation time (trip): - I _m /I _{set} ratio > 1.05	<70 ms
Reset	
Reset ratio	97 % of the pick-up setting
Reset time setting Inaccuracy: Reset time	0.010…10.000 s, step 0.005 s ±1.5 % or ±60 ms
Instant reset time and start-up reset	<55 ms

8.2.1.10 Harmonic overcurrent protection (Ih>; 50H/51H/68H)

Table. 8.2.1.10 - 390. Technical data for the harmonic overcurrent function.

Measurement inputs		
Current inputs	Phase current inputs: I_{L1} (A), I_{L2} (B), I_{L3} (C) Residual current channel I_{01} (Coarse) Residual current channel I_{02} (Fine)	
Pick-up		
Harmonic selection	2 nd , 3 rd , 4 th , 5 th , 6 th 7 th , 9 th , 11 th , 13 th , 15 th , 17 th or 19 th	
Used magnitude	Harmonic per unit (× I _N) Harmonic relative (Ih/IL)	
Pick-up setting	$0.052.00 \times I_N$, setting step $0.01 \times I_N (\times I_N)$ 5.00200.00 %, setting step 0.01 % (Ih/IL)	
Inaccuracy: - Starting × I _N - Starting × Ih/IL	<0.03 × I _N (2 nd , 3 rd , 5 th) <0.03 × I _N tolerance to Ih (2 nd , 3 rd , 5 th)	
Operation time		
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s	
Inaccuracy: - Definite time (I _M /I _{SET} ratio >1.05)	±1.0 % or ±35 ms	

IDMT setting parameters: k Time dial setting for IDMT A IDMT constant B IDMT constant C IDMT constant	0.0125.00, step 0.01 0250.0000, step 0.0001 05.0000, step 0.0001 0250.0000, step 0.0001
Inaccuracy: - IDMT operating time - IDMT minimum operating time	±1.5 % or ±20 ms ±20 ms
Instant operation time	
Start time and instant operation time (trip): I_M/I_{SET} ratio >1.05	<50 ms
Reset	
Reset ratio	95 % of the pick-up setting
Reset time setting Inaccuracy: Reset time	0.01010.000 s, step 0.005 s ±1.0 % or ±35 ms
Instant reset time and start-up reset	<50 ms

NOTICE!

i

Harmonics generally: The amplitude of the harmonic content \underline{must} be least 0.02 \times IN when the relative mode (Ih/IL) is used!

Blocking: To achieve fast activation for blocking purposes with the harmonic overcurrent stage, note that the harmonic stage may be activated by a rapid load change or fault situation. An intentional activation lasts for approximately 20 ms if a harmonic component is not present. The harmonic stage stays active if the harmonic content is above the pick-up limit.

Tripping: When using the harmonic overcurrent stage for tripping, please ensure that the operation time is set to 20 ms (DT) or longer to avoid nuisance tripping caused by the above-mentioned reasons.

8.2.1.11 Circuit breaker failure protection (CBFP; 50BF/52BF)

Table. 8.2.1.11 - 391. Technical data for the circuit breaker failure protection function.

Measurement inputs	
Current inputs	Phase current inputs: I _{L1} (A), I _{L2} (B), I _{L3} (C) Residual current channel I ₀₁ (Coarse) Residual current channel I ₀₂ (Fine)
Current input magnitudes	RMS phase currents RMS residual current (I_{01} , I_{02} or calculated I_0)
Pick-up	
Monitored signals	Digital input status, digital output status, logical signals
Pick-up current setting: - IL1IL3 - I01, I02, I0Calc	0.1040.00 × I _N , setting step 0.01 × I _N 0.00540.00 × I _N , setting step 0.005 × I _N

Inaccuracy: - Starting phase current (5A) - Starting I01 (1 A) - Starting I02 (0.2 A) - Starting I0Calc (5 A)	±0.5 %ISET or ±15 mA (0.104.0 × ISET) ±0.5 %IOSET or ±3 mA (0.00510.0 × ISET) ±1.5 %IOSET or ±1.0 mA (0.00525.0 × ISET) ±1.0 %IOSET or ±15 mA (0.0054.0 × ISET)	
Operation time		
Definite time function operating time setting	0.0501800.000 s, setting step 0.005 s	
Inaccuracy: - Current criteria (I _M /I _{SET} ratio 1.05→) - DO or DI only	±1.0 % or ±55 ms ±15 ms	
Reset		
Reset ratio	97 % of the pick-up current setting	
Reset time	<50 ms	

8.2.1.12 Low-impedance or high-impedance restricted earth fault/ cable end differential protection (I0d>; 87N)

Measurement inputs		
Current inputs	Phase current inputs: I _{L1} (A), I _{L2} (B), I _{L3} (C) Residual current channel I ₀₁ (Coarse) Residual current channel I ₀₂ (Fine)	
Current input calculations	Calculated bias and residual differential currents	
Pick-up		
Operating modes	Restricted earth fault Cable end differential	
Characteristics	Biased differential with 3 settable sections and 2 slopes	
Pick-up current sensitivity setting Slope 1 Slope 2 Bias (Turnpoint 1 & 2)	0.0150.00 % (I _N), setting step 0.01 % 0.00150.00 %, setting step 0.01 % 0.00250.00 %, setting step 0.01 % 0.0150.00 × I _N , setting step 0.01 × I _N	
Inaccuracy - Starting	$\pm 3\%$ of the set pick-up value > 0.5 × I_N setting. ± 5 mA < 0.5 × I_N setting	
Operation time		
Instant operation time 1.05 x I _{SET}	<30 ms	
Reset		
Reset ratio	No hysteresis	
Reset time	<40 ms	

Table. 8.2.1.12 - 392. Technical data for the restricted earth fault/cable end differential function.

8.2.1.13 Overvoltage protection (U>; 59)

Table. 8.2.1.13 - 393. Technical data for the overvoltage function.

Measurement inputs	
Voltage inputs	U _{L1} , U _{L2} , U _{L3} U _{L12} , U _{L23} , U _{L31} (+ U ₀)
Voltage input magnitudes	RMS line-to-line or line-to-neutral voltages
Pick-up	
Pick-up terms	1 voltage 2 voltages 3 voltages
Pick-up setting	50.00150.00 %U _N , setting step 0.01 %U _N
Inaccuracy: - Voltage	±1.5 %USET
Operating time	
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s
Inaccuracy: - Definite time (U _M /U _{SET} ratio 1.05 \rightarrow)	±1.0 % or ±35 ms
IDMT setting parameters: k Time dial setting for IDMT A IDMT constant B IDMT constant C IDMT constant	0.0125.00, step 0.01 0250.0000, step 0.0001 05.0000, step 0.0001 0250.0000, step 0.0001
Inaccuracy: - IDMT operating time - IDMT minimum operating time	±1.5 % or ±20 ms ±20 ms
Instant operation time	
Start time and instant operation time (trip): - U_M/U_{SET} ratio 1.05 \rightarrow	<50 ms
Reset	
Reset ratio	97 % of the pick-up voltage setting
Reset time setting Inaccuracy: Reset time	0.01010.000 s, step 0.005 s ±1.0 % or ±45 ms
Instant reset time and start-up reset	<50 ms

8.2.1.14 Undervoltage protection (U<; 27)

Table. 8.2.1.14 - 394. Technical data for the undervoltage function.

Measurement inputs

Voltage inputs	UL1, UL2, UL3 UL12, UL23, UL31 (+ U0)
Voltage input magnitudes	RMS line-to-line or line-to-neutral voltages
Pick-up	
Pick-up terms	1 voltage 2 voltages 3 voltages
Pick-up setting	$0.00\ldots 120.00~\% U_N,$ setting step 0.01 $\% U_N$
Inaccuracy: - Voltage	±1.5 %Uset or ±30 mV
Low voltage block	
Pick-up setting	0.0080.00 %U _N , setting step 0.01 %U _N
Inaccuracy: - Voltage	±1.5 %U _{SET} or ±30 mV
Operation time	
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s
Inaccuracy: - Definite time (U _M /U _{SET} ratio 1.05 \rightarrow)	±1.0 % or ±35 ms
IDMT setting parameters: k Time dial setting for IDMT A IDMT constant B IDMT constant C IDMT constant	0.0125.00, step 0.01 0250.0000, step 0.0001 05.0000, step 0.0001 0250.0000, step 0.0001
Inaccuracy: - IDMT operating time - IDMT minimum operating time	±1.5 % or ±20 ms ±20 ms
Instant operation time	
Start time and instant operation time (trip): - U_M/U_{SET} ratio 1.05 \rightarrow	<65 ms
Retardation time (overshoot)	<30 ms
Reset	
Reset ratio	103 % of the pick-up voltage setting
Reset time setting Inaccuracy: Reset time	0.01010.000 s, step 0.005 s ±1.0 % or ±45 ms
Instant reset time and start-up reset	<50 ms

NOTICE!

i

The low-voltage block is not in use when its pick-up setting is set to 0 %. The undervoltage function trip signal is active when the LV block is disabled and the device has no voltage injection.

i

Version: 2.12

NOTICE!

After the low voltage blocking condition, the undervoltage stage does not trip unless the voltage exceeds the pick-up setting first.

8.2.1.15 Neutral overvoltage protection (U0>; 59N)

Table. 8.2.1.15 - 395. Technical data for the neutral overvoltage function.

Measurement inputs	Measurement inputs	
Voltage input (selectable)	Residual voltage from U3 or U4 voltage channel Residual voltage calculated from U_{L1} , U_{L2} , U_{L3}	
Voltage input magnitudes	RMS residual voltage U0 Calculated RMS residual voltage U0	
Pick-up		
Pick-up voltage setting	1.0050.00 % U0 _N , setting step 0.01 × I _N	
Inaccuracy: - Voltage U0 - Voltage U0Calc	±1.5 %U0 _{SET} or ±30 mV ±150 mV	
Operation time		
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s	
Inaccuracy: - Definite time (U0 _M /U0 _{SET} ratio 1.05→)	±1.0 % or ±45 ms	
IDMT setting parameters: k Time dial setting for IDMT A IDMT constant B IDMT constant C IDMT constant	0.0125.00, step 0.01 0250.0000, step 0.0001 05.0000, step 0.0001 0250.0000, step 0.0001	
Inaccuracy: - IDMT operating time - IDMT minimum operating time	±1.5 % or ±20 ms ±20 ms	
Instant operation time		
Start time and instant operation time (trip): - $U0_M/U0_{SET}$ ratio 1.05 \rightarrow	<50 ms	
Reset		
Reset ratio	97 % of the pick-up voltage setting	
Reset time setting Inaccuracy: Reset time	0.000 150.000 s, step 0.005 s ±1.0 % or ±50 ms	
Instant reset time and start-up reset	<50 ms	

8.2.1.16 Sequence voltage protection (U1/U2>/<; 47/27P/59NP)

Table. 8.2.1.16 - 396. Technical data for the sequence voltage function.

Measurement inputs	
Voltage inputs	U _{L1} , U _{L2} , U _{L3} U _{L12} , U _{L23} , U _{L31} (+ U ₀)
Voltage input calculations	Positive sequence voltage (I1) Negative sequence voltage (I2)
Pick-up	
Pick-up setting	5.00150.00 %U _N , setting step 0.01 %U _N
Inaccuracy: - Voltage	±1.5 %User or ±30 mV
Low voltage block	
Pick-up setting	1.0080.00 %U _N , setting step 0.01 %U _N
Inaccuracy: -Voltage	± 1.5 %U _{SET} or ± 30 mV
Operation time	
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s
Inaccuracy -Definite Time (U _M /U _{SET} ratio 1.05 \rightarrow)	±1.0 % or ±35 ms
IDMT setting parameters: k Time dial setting for IDMT A IDMT constant B IDMT constant C IDMT constant	0.0125.00, step 0.01 0250.0000, step 0.0001 05.0000, step 0.0001 0250.0000, step 0.0001
Inaccuracy: - IDMT operating time - IDMT minimum operating time	±1.5 % or ±20 ms ±20 ms
Instant operation time	
Start time and instant operation time (trip): - U_M/U_{SET} ratio <0.95/1.05 \rightarrow	<65 ms
Reset	
Reset ratio	97 or 103 % of the pick-up voltage setting
Reset time setting Inaccuracy: Reset time	0.01010.000 s, step 0.005 s ±1.0 % or ±35 ms
Instant reset time and start-up reset	<50 ms

8.2.1.17 Overfrequency and underfrequency protection (f>/<; 81O/81U)

Table. 8.2.1.17 - 397. Technical data for the overfrequency and underfrequency function.

Input signals		
Sampling mode	Fixed Tracking	
Frequency reference 1 Frequency reference 2 Frequency reference 3	CT1IL1, CT2IL1, VT1U1, VT2U1 CT1IL2, CT2IL2, VT1U2, VT2U2 CT1IL3, CT2IL3, VT1U3, VT2U3	
Pick-up		
f> pick-up setting f< pick-up setting	10.0070.00 Hz, setting step 0.01 Hz 7.0065.00 Hz, setting step 0.01 Hz	
Inaccuracy (sampling mode): - Fixed - Tracking	±20 mHz (50/60 Hz fixed frequency) ±20 mHz (U > 30 V secondary) ±20 mHz (I > 30 % of rated secondary)	
Operation time		
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s	
Inaccuracy: - Definite time (I _M /I _{SET} ratio +/- 50 mHz)	±1.5 % or ±50 ms (max. step size: 100 mHz)	
Instant operation time		
Start time and instant operation time (trip): - IM/ISET ratio +/- 50 mHz (Fixed) - IM/ISET ratio +/- 50 mHz (Tracking)	<70 ms (max. step size: 100 mHz) <3 cycles or <60 ms (max. step size: 100 mHz)	
Reset		
Reset ratio	0.020 Hz	
Instant reset time and start-up reset: - I _M /I _{SET} ratio +/- 50 mHz (Fixed) - I _M /I _{SET} ratio +/- 50 mHz (Tracking)	<110 ms (max. step size: 100 mHz) <3 cycles or <70 ms (max. step size: 100 mHz)	

T

NOTICE!

The secondary voltage must exceed 2 volts or the current must exceed 0.25 amperes (peak-to peak) in order for the function to measure frequency.

NOTICE!

The frequency is measured two seconds after a signal is received.

8.2.1.18 Rate-of-change of frequency protection (df/dt>/<; 81R)

Table. 8.2.1.18 - 398. Technical data for the rate-of-change of frequency function.

Input signals

Sampling mode	Fixed Tracking	
Frequency reference 1 Frequency reference 2 Frequency reference 3	CT1IL1, CT2IL1, VT1U1, VT2U1 CT1IL2, CT2IL2, VT1U2, VT2U2 CT1IL3, CT2IL3, VT1U3, VT2U3	
Pick-up		
df/dt >/< pick-up setting	0.151.00 Hz/s, setting step 0.01 Hz	
f> limit	10.0070.00 Hz, setting step 0.01 Hz	
f< limit	7.0065.00 Hz, setting step 0.01 Hz	
Pick-up inaccuracy		
- df/dt	±5.0 %I _{SET} or ±20 mHz/s	
- frequency	±15 mHz (U > 30 V secondary) ±20 mHz (I > 30 % of rated secondary)	
Operation time		
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s	
Inaccuracy: - Definite time (I _M /I _{SET} ratio +/- 50 mHz)	±1.5 % or ±110 ms (max. step size: 100 mHz)	
Start time and instant operation time (trip):		
- f _M /f _{SET} ratio +/- 20 mHz (overreach)	<200 ms	
- f _M /f _{SET} ratio +/- 200 mHz (overreach)	<90 ms	
Reset		
f< and f> frequency limit	±0.020 Hz	
df/dt	±10.0 % of pick-up or 50 mHz/s	
Instant reset time and start-up reset: - f _M /f _{SET} ratio +/- 50 mHz	<325 ms (max. step size: 100 mHz)	

i

NOTICE! Frequency is measured two seconds after a signal is received.

8.2.1.19 Line thermal overload protection (TF>; 49F)

Table. 8.2.1.19 - 399. Technical data for the line thermal overload protection function.

Measurement inputs	
Current inputs	Phase current inputs: IL1 (A), IL2 (B), IL3 (C)
Current input magnitudes	TRMS phase currents (up to the 31 st harmonic)
Settings	

Time constants τ	1	
Time constant value	0.0500.00 min, step 0.1 min	
Service factor (maximum overloading)	$0.015.00 \times I_N$, step $0.01 \times I_N$	
Thermal model biasing	- Ambient temperature (Set –60.0500.0 deg, step 0.1 deg and RTD) - Negative sequence current	
Thermal replica temperature estimates	Selectable between °C and °F	
Outputs		
- Alarm 1 - Alarm 2 - Thermal trip - Trip delay - Restart inhibit	0150 %, step 1 % 0150 %, step 1 % 0150 %, step 1 % 0.0003600.000 s, step 0.005 s 0150 %, step 1 %	
Inaccuracy		
- Starting - Operating time	±0.5 % of the set pick-up value ±5 % or ± 500 ms	

8.2.1.20 Power protection (P, Q, S>/<; 32)

Table. 8.2.1.20 - 400. Technical data for the power protection function.

Measurement inputs		
Current inputs	Phase current inputs: I_{L1} (A), I_{L2} (B), I_{L3} (C)	
Voltage inputs	U _{L1} , U _{L2} , U _{L3} U _{L12} , U _{L23} , U _{L31} (+ U ₀)	
Calculated measurements	Three-phase active, reactive or apparent power (P, Q or S) value based on the chosen or set nominal amplitude.	
Pick-up		
Comparator selection	> or <	
> or <	-500.000500.000 %/MVA _N , setting step 0.005 %/MVA _N	
Inaccuracy: - Active, reactive, or apparent power	Typically <1.0 %P _{SET}	
Operation time		
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s	
Inaccuracy: - Definite time (P _M /P _{SET} ratio 1.05→)	±1.0 % or ±35 ms	
Instant operation time		

Start time and instant operation time (trip): - PQS _M /PQS _{SET} ratio 1.05→	<40 ms	
Reset		
Reset ratio	97 or 103 %Pset	
Instant reset time and start-up reset	<40 ms	

8.2.1.21 Resistance temperature detectors (RTD)

Table. 8.2.1.21 - 401. Technical data of the resistance temperature detectors.

Inputs		
Resistance input magnitudes	Measured temperatures measured by RTD sensors	
RTD channels	12 individual RTD channels	
Settable alarms	24 alarms available (two per each RTD channel)	
Pick-up		
Alarm setting range Inaccuracy Reset ratio	101.002000.00 deg, setting step 0.1 deg (either < or > setting) ±3 % of the set pick-up value 97 % of the pick-up setting	
Operation		
Operating time	Typically <500 ms	

8.2.1.22 Arc fault protection (IArc>/I0Arc>; 50Arc/50NArc) (optional)

Table. 8.2.1.22 - 402. Technical data for the arc fault protection function.

Measurement inputs		
Current inputs	Phase current inputs: I _{L1} (A), I _{L2} (B), I _{L3} (C) Residual current channel I ₀₁ (Coarse) Residual current channel I ₀₂ (Fine)	
Current input magnitudes	Sample-based phase current measurement Sample-based residual current measurement	
Arc point sensor inputs	Channels S1, S2, S3, S4 (pressure and light sensor, or light-only sensor) Up to four (4) sensors per channel	
System frequency operating range	6.0075.00 Hz	
Pick-up		
Pick-up current setting (phase current) Pick-up current setting (residual current) Pick-up light intensity	$\begin{array}{l} 0.5040.00 \times I_N \text{, setting step } 0.01 \times I_N \\ 0.1040.00 \times I_N \text{, setting step } 0.01 \times I_N \\ 8, 25 \text{ or } 50 \text{ kLx (the sensor is selected in the order code)} \end{array}$	

Starting inaccuracy (IArc> and I0Arc>)	± 3 % of the set pick-up value > 0.5 × IN setting. 5 mA < 0.5 × IN setting.
Point sensor detection radius	180 degrees
Operation time	
Light only: - Semiconductor outputs HSO1 and HSO2 - Regular relay outputs	Typically 7 ms (312 ms) Typically 10 ms (6.515 ms)
Light + current criteria (zone 14): - Semiconductor outputs HSO1 and HSO2 - Regular relay outputs	Typically 10 ms (6.514 ms) Typically 14 ms (1018 ms)
Arc BI only: - Semiconductor outputs HSO1 and HSO2 - Regular relay outputs	Typically 7 ms (212 ms) Typically 10 ms (6.515 ms)

8.2.2 Control functions

8.2.2.1 Setting group selection

Table. 8.2.2.1 - 403. Technical data for the setting group selection function.

Settings and control modes		
Setting groups	8 independent, control-prioritized setting groups	
Control scale	le Common for all installed functions which support setting groups	
Control mode		
Local	Any binary signal available in the device	
Remote	Force change overrule of local controls either from the setting tool, HMI or SCADA	
Operation time		
Reaction time	<5 ms from receiving the control signal	

8.2.2.2 Object control and monitoring

Table. 8.2.2.2 - 404. Technical data for the object control and monitoring function.

General	
Number of objects	10

Supported object types	Circuit breaker Circuit breaker with withdrawable cart Disconnector (MC) Disconnector (GND) Custom object image	
Signals		
Input signals	Digital inputs Software signals	
Output signals	Close command output Open command output	
Operation time		
Breaker traverse time setting	0.02500.00 s, setting step 0.02 s	
Max. close/open command pulse length	0.02500.00 s, setting step 0.02 s	
Control termination time out setting	0.02500.00 s, setting step 0.02 s	
Inaccuracy: - Definite time operating time	±0.5 % or ±10 ms	
Breaker control operation time		
External object control time	<75 ms	
Object control during auto-reclosing	See the technical sheet for the auto-reclosing function.	

Table. 8.2.2.2 - 405. Technical data for the circuit breaker wear monitoring function.

Pick-up		
Breaker characteristics settings: - Nominal breaking current - Maximum breaking current - Operations with nominal current - Operations with maximum breaking current	0.00100.00 kA, setting step 0.001 kA 0.00100.00 kA, setting step 0.001 kA 0200 000 operations, setting step 1 operation 0200 000 operations, setting step 1 operation	
Pick-up setting for Alarm 1 and Alarm 2	0200 000 operations, setting step 1 operation	
Inaccuracy		
Inaccuracy for current/operations counter: - Current measurement element - Operation counter	$0.1\times$ I_N > I < 2 \times I_N ± 0.2 % of the measured current, rest 0.5 % ± 0.5 % of operations deducted	

8.2.2.3 Indicator object monitoring

Table. 8.2.2.3 - 406. Technical data for the indicator object monitoring function.

General	
Number of objects	10

Supported object types	Disconnector (GND) Custom object image
Signals	
Input signals	Digital inputs Software signals

8.2.2.4 Cold load pick-up (CLPU)

Table. 8.2.2.4 - 407. Technical data for the cold load pick-up function.

Measurement inputs	
Current inputs	Phase current inputs: IL1 (A), IL2 (B), IL3 (C)
Current input magnitudes	RMS phase currents
Pick-up	
Pick-up current setting - I _{LOW} /I _{HIGH} /IOVER	$0.0140.00 \times I_N$, setting step $0.01 \times I_N$
Reset ratio	97 % of the pick-up current setting
Inaccuracy: - Current	±0.5 %I _{SET} or ±15 mA (0.104.0 × I _{SET})
Operation time	
Definite time function operating time settings: - t _{SET} - t _{MAX} - t _{MIN}	0.0001800.000 s, setting step 0.005 s 0.0001800.000 s, setting step 0.005 s 0.0001800.000 s, setting step 0.005 s
Inaccuracy: - Definite time (I _M /I _{SET} ratio = 1.05/0.95)	±1.0 % or ±45 ms
Instant operation time	
CLPU activation and release	<45 ms (measured from the trip contact)

NOTICE!

i

A single-phase current (IL1, IL2 or IL3) is enough to prolong or release the blocking during an overcurrent condition.

8.2.2.5 Switch-on-to-fault (SOTF)

Table. 8.2.2.5 - 408. Technical data for the switch-on-to-fault function.

Initialization signals	
SOTF activate input	Any blocking input signal (Object closed signal, etc.)
Pick-up	

SOTF function input	Any blocking input signal (I> or similar)
SOTF activation time	
Activation time	<40 ms (measured from the trip contact)
SOTF release time	
Release time setting	0.0001800.000 s, setting step 0.005 s
Inaccuracy: - Definite time	±1.0 % or ±30 ms
SOTF instant release time	<40 ms (measured from the trip contact)

8.2.3 Monitoring functions

8.2.3.1 Current transformer supervision

Table. 8.2.3.1 - 409. Technical data for the current transformer supervision function.

Measurement inputs	
Current inputs	Phase current inputs: I _{L1} (A), I _{L2} (B), I _{L3} (C) Residual current channel I ₀₁ (Coarse) (optional) Residual current channel I ₀₂ (Fine) (optional)
Current input magnitudes	RMS phase currents RMS residual current (I ₀₁ , I ₀₂) (optional)
Pick-up	
Pick-up current settings: - ISET high limit - ISET low limit - ISUM difference - ISET ratio - I2/11 ratio	$\begin{array}{l} 0.1040.00 \times I_{N} \text{, setting step } 0.01 \times I_{N} \\ 0.1040.00 \times I_{N} \text{, setting step } 0.01 \times I_{N} \\ 0.1040.00 \times I_{N} \text{, setting step } 0.01 \times I_{N} \\ 0.01100.00 \ \% \text{, setting step } 0.01 \ \% \\ 0.01100.00 \ \% \text{, setting step } 0.01 \ \% \end{array}$
Inaccuracy: - Starting IL1, IL2, IL3 - Starting I2/I1 - Starting I01 (1 A) - Starting I02 (0.2 A)	
Time delay for alarm	
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s
Inaccuracy_ - Definite time (I _M /I _{SET} ratio > 1.05)	±2.0 % or ±80 ms
Instant operation time (alarm): - I _M /I _{SET} ratio > 1.05	<80 ms (<50 ms in differential protection relays)
Reset	
Reset ratio	97/103 % of the pick-up current setting

Instant reset time and start-up reset	<80 ms (<50 ms in differential protection relays)

8.2.3.2 Voltage transformer supervision (60)

Table. 8.2.3.2 - 410. Technical data for the voltage transformer supervision function.

Measurement inputs		
Voltage inputs	UL1, UL2, UL3 UL12, UL23, UL31	
Voltage input magnitudes	RMS line-to-line or line-to-neutral voltages	
Pick-up		
Pick-up settings: - Voltage (low pick-up) - Voltage (high pick-up) - Angle shift limit	$\begin{array}{l} 0.050.50\times U_N\text{, setting step } 0.01\times U_N\\ 0.501.10\times U_N\text{, setting step } 0.01\times U_N\\ 2.0090.00\text{ deg, setting step } 0.10\text{ deg} \end{array}$	
Inaccuracy: - Voltage - U angle (U> 1 V)	±1.5 %U _{SET} ±1.5°	
External line/bus side pick-up (optional)	$0 \rightarrow 1$	
Time delay for alarm		
Definite time function operating time setting	0.001800.00 s, setting step 0.005 s	
Inaccuracy: - Definite time (U _M /U _{SET} ratio > 1.05/0.95)	±1.0 % or ±35 ms	
Instant operation time (alarm): - U _M /U _{SET} ratio > 1.05/0.95	<80 ms	
VTS MCB trip bus/line (external input)	<50 ms	
Reset		
Reset ratio	97/103 % of the pick-up voltage setting	
Reset time setting Inaccuracy: Reset time	0.01010.000 s, step 0.005 s ±2.0 % or ±80 ms	
Instant reset time and start-up reset	<50 ms	
VTS MCB trip bus/line (external input)	<50 ms	

NOTICE!

When turning on the auxiliary power of a device, the normal condition of a stage has to be fulfilled before tripping.

i

8.2.3.3 Current total harmonic distortion

Table. 8.2.3.3 - 411. Technical data for the total harmonic distortion function.

Input signals	
Current inputs	Phase current inputs: I_{L1} (A), I_{L2} (B), I_{L3} (C) Residual current channel I_{01} (Coarse) Residual current channel I_{02} (Fine)
Current input magnitudes	Current measurement channels (FFT result) up to the 31 st harmonic component.
Pick-up	
Operating modes	Power THD Amplitude THD
Pick-up setting for all comparators	0.10200.00 % , setting step 0.01 %
Inaccuracy	± 3 % of the set pick-up value > 0.5 × I _N setting; 5 mA < 0.5 × I _N setting.
Time delay	
Definite time function operating time setting for all timers	0.001800.00 s, setting step 0.005 s
Inaccuracy: - Definite time operating time - Instant operating time, when I _M /I _{SET} ratio > 3 - Instant operating time, when I _M /I _{SET} ratio 1.05 < I _M /I _{SET} < 3	±0.5 % or ±10 ms Typically <20ms Typically <25 ms
Reset	
Reset time	Typically <10 ms
Reset ratio	97 %

8.2.3.4 Disturbance recorder

Table. 8.2.3.4 - 412. Technical data for the disturbance recorder function.

Recorded values	
Recorder analog channels	020 channels Freely selectable
Recorder digital channels	095 channels Freely selectable analog and binary signals 5 ms sample rate (FFT)
Performance	
Sample rate	8, 16, 32 or 64 samples/cycle

Recording length	0.000…1800.000 s, setting step 0.001 s The maximum length is determined by the chosen signals.
Number of recordings	0100, 60 MB of shared flash memory reserved The maximum number of recordings according to the chosen signals and operation time setting combined

8.2.3.5 Event logger

Table. 8.2.3.5 - 413. Technical data for the event logger function.

General information							
Event history capacity	15 000 events						
Event timestamp resolution	1 ms						

8.3 Tests and environmental

Electrical environment compatibility

Table. 8.3 - 414. Disturbance tests.

All tests	CE-approved and tested according to EN 60255-26
Emissions	
Conducted emissions: EN 60255-26 Ch. 5.2, CISPR 22	150 kHz30 MHz
Radiated emissions: EN 60255-26 Ch. 5.1, CISPR 11	301 000 MHz
Immunity	
Electrostatic discharge (ESD): EN 60255-26, IEC 61000-4-2	Air discharge 15 kV Contact discharge 8 kV
Electrical fast transients (EFT): EN 60255-26, IEC 61000-4-4	Power supply input 4 kV, 5/50 ns, 5 kHz Other inputs and outputs 4 kV, 5/50 ns, 5 kHz
Surge: EN 60255-26, IEC 61000-4-5	Between wires: 2 kV, 1.2/50 µs Between wire and earth: 4 kV, 1.2/50 µs
Radiated RF electromagnetic field: EN 60255-26, IEC 61000-4-3	f = 801 000 MHz, 10 V/m
Conducted RF field: EN 60255-26, IEC 61000-4-6	f = 150 kHz80 MHz, 10 V (RMS)

Table. 8.3 - 415. Voltage tests.

Dielectric voltage test

EN 60255-27, IEC 60255-5, EN 60255-1	2 kV, 50 Hz, 1 min
Impulse voltage test	
EN 60255-27, IEC 60255-5	5 kV, 1.2/50 μs, 0.5 J

Physical environment compatibility

Table. 8.3 - 416. Mechanical tests.

Vibration test	
EN 60255-1, EN 60255-27, IEC 60255-21-1	213.2 Hz, ± 3.5 mm 13.2100 Hz, ± 1.0 g
Shock and bump test	
EN 60255-1, EN 60255-27, IEC 60255-21-2	20 g, 1 000 bumps/dir.

Table. 8.3 - 417. Environmental tests.

Damp heat (cyclic)								
EN 60255-1, IEC 60068-2-30 Operational: +25+55 °C, 9397 % (RH), 12+12h								
Dry heat								
EN 60255-1, IEC 60068-2-2	Storage: +70 °C, 16 h Operational: +55 °C, 16 h							
Cold test								
EN 60255-1, IEC 60068-2-1	Storage: –40 °C, 16 h Operational: –20 °C, 16 h							

Table. 8.3 - 418. Environmental conditions.

IP classes						
Casing protection class	IP54 (front) IP21 (rear)					
Temperature ranges						
Ambient service temperature range	−35…+70 °C					
Transport and storage temperature range	-40+70 °C					
Other						
Altitude	<2000 m					
Overvoltage category						
Pollution degree	2					

Casing and package

Table. 8.3 - 419. Dimensions and weight.

Without packaging (net)								
Dimensions	Height: 208 mm Width: 257 mm (½ rack) Depth: 165 mm (no cards or connectors)							
Weight 1.5 kg								
With packaging (gross)								
Dimensions	Height: 250 mm Width: 343 mm Depth: 256 mm							
Weight	2.0 kg							

9 Ordering information

		۹Q -	- C	2	5	5	х	- P	х	x	х	x	х	Α	- X	х)	X	ХХ	X	хх	Х
_	Model Capacitor Bank Protection																				
E	Device size																				
	Analog measurement 5 Current measurement channels and 4 voltage measureme	ent c	hanı	nels																	
A S B F C V	Functionality package Standard capacitor bank protection functions PFC (Power factor controller) for up to 5 banks /oltage protection functions + PFC for up to 5 banks Standard capacitor bank protection functions + PFC for up to	o 4 b	anks	5																	
_	Nounting Panel mounted																				
A H 8	Auxiliary voltage 30265 VAC/DC 1872 VDC																				
N D F	Measurement accuracy Power/Energy measurement accuracy 0.5% Power/Energy measurement accuracy 0.2%																				
A S B F C S	Terminals Standard Ring lug terminals Standard current terminals, spring cage voltage and I/O term Ring-lug current terminals, spring cage voltage and I/O term																				
AN	Conformal coating No coating Coated																				
A 3 3 3	Digital inputs on power supply module 3 Digital inputs, 24 V nominal threshold 3 Digital inputs, 110 V nominal threshold 3 Digital inputs, 220 V nominal threshold																				
	Reserved for future use																				
S	Slots C, E, F, G, H, I, J, K, L, M, N (11 pcs)																				
3 8 5 5 7 A 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	Empty 3 Digital inputs 5 Output relays (max. 6 pcs) Arc protection with 4 point sensor channels, 2 x HSO, 1 x Bl 3 x RTD input (max. 2 pcs) 2 x RJ-45 100Mb Ethernet & IRIG-B (max. 1 pcs) * 4 x TA outputs - 1 x mA input (max. 2 pcs) 2 outple LC 100Mb Ethernet (HSR, PRP redundant protocols Double RJ45 100Mb Ethernet (HSR, PRP redundant protocols) (m	ax. 1	pcs	s) *																
ΛF	RS-232 - Serial fiber (Plastic-Plastic) (max. 1 pcs) * 7S-232 - Serial fiber (Plastic-Glass) (max. 1 pcs) * RS-232 - Serial fiber (Glass-Plastic) (max. 1 pcs) * RS-232 - Serial fiber (Glass-Glass) (max. 1 pcs) *																				

Accessories

Order code	Description	Note
AX007	External 6-channel 2 or 3 wires RTD Input module, pre- configured	Requires an external 24 VDC supply.
AX008	External 8-ch Thermocouple mA Input module, pre- configured	Requires an external 24 VDC supply.
AX013	AQ-250 series raising frame 120mm	
AQX014	AQ-250 series raising frame 40mm	

AQX015	AQ-250 series wall mounting bracket	
AQ-01B	Light point sensor unit (25,000 lux threshold)	Max. cable length 200 m
AQ-01C	Light point sensor unit (50,000 lux threshold)	Max. cable length 200 m
AQ-02A	Pressure and light point sensor unit (8,000 lux threshold)	Max. cable length 200 m
AQ-02B	Pressure and light point sensor unit (25,000 lux threshold)	Max. cable length 200 m
AQ-02C	Pressure and light point sensor unit (50,000 lux threshold)	Max. cable length 200 m

AQ-C255 Instruction manual Version: 2.12

10 Contact and reference information

Manufacturer

Arcteq Relays Ltd.

Visiting and postal address

Kvartsikatu 2 A 1 65300 Vaasa, Finland

Contacts

Phone:

+358 10 3221 370

Website:

Technical support:

arcteq.com/support-login +358 10 3221 388 (EET 9:00 – 17.00)

E-mail (sales):

sales@arcteq.fi

arcteq.com